Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sound-turbulence interaction in low Mach number duct flow
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-7203-0503
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0003-4103-0129
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-5913-5431
2013 (English)In: 19th AIAA/CEAS Aeroacoustics Conference, American Institute of Aeronautics and Astronautics, 2013Conference paper, Published paper (Other academic)
Abstract [en]

When sound waves propagate in ducts with the presence of turbulent flow, turbulent stresses can cause extra attenuation of the wave in addition to that caused by viscothermal effects. Different models for the turbulent stress acting on the sound waves are investigated in this study, and they are applied to compute the wall shear stress impedance of sound waves. Among these models the non-equilibrium model proposed by the present authors in another paper is studied in details. Attempt of including mean flow convection effect in the non-equilibrium model is made. The resulting modified model is then applied to compute the wave attenuation, and the results are compared with experimental data. 

Place, publisher, year, edition, pages
American Institute of Aeronautics and Astronautics, 2013.
National Category
Fluid Mechanics and Acoustics
Research subject
Järnvägsgruppen - Ljud och vibrationer
Identifiers
URN: urn:nbn:se:kth:diva-123753DOI: 10.2514/6.2013-2024Scopus ID: 2-s2.0-84883690901ISBN: 978-162410213-4 (print)OAI: oai:DiVA.org:kth-123753DiVA: diva2:629742
Conference
19th AIAA/CEAS Aeroacoustics Conference; Berlin; Germany; 27 May 2013 through 29 May 2013
Funder
Swedish Research Council, SDA 26211
Note

QC 20130710

Available from: 2013-06-17 Created: 2013-06-17 Last updated: 2015-05-26Bibliographically approved
In thesis
1. Modeling of sound-turbulence interaction in low-Mach-number duct flows
Open this publication in new window or tab >>Modeling of sound-turbulence interaction in low-Mach-number duct flows
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

When sound waves propagate in a duct in the presence of turbulent flow, tur- bulent mixing can cause extra attenuation of the sound waves in addition to that caused by the viscothermal eects. Experiments show that compared to the vis- cothermal eects, turbulent absorption becomes the dominant contribution to the sound attenuation at suciently low frequencies. The mechanism of this turbulent absorption is attributed to the turbulent stress and the turbulent heat transfer act- ing on the coherent perturbations (including to sound waves) near the duct wall, i.e. sound-turbulence interaction.

The purpose of the current investigation is to understand the mechanism of the sound-turbulence interaction in low-Mach-number internal flows by means of theoretical modeling and numerical simulation. The turbulence absorption can be modeled through perturbation turbulent Reynolds stresses and perturbation turbu- lent heat flux in the linearized perturbation equations. In this thesis, the linearized perturbation equations are reviewed, and dierent models for the turbulent absorp- tion of the sound waves are investigated. In addition, a new non-equilibrium model for the perturbation turbulent Reynolds stress is proposed. The proposed model is validated by comparing the computed perturbation fields with experimental data from turbulent pipe flow measurements, and large eddy simulations (LES) of turbu- lent channel flow. Good agreements are observed.

Besides the theoretical modeling, LES is also carried out as a numerical investi- gation of the sound-turbulence interaction. Some preliminary results from the LES are presented. 

Abstract [sv]

Vid ljudutbredning i kanaler med turbulent flöde kan diusion som orsakas av turbulens ge extra dämpning av ljudvågor utöver den som orsakas av viskoter- miska eekter. Experiment visar att vid låga frekvenser ger denna absorption det dominerande bidraget till ljuddämpning. Mekanismen för denna absorption är tur- bulensens inverkan på koherenta störningar, bland annat ljudvågor, dvs ljud - tur- bulensinteraktion.

Syftet med denna undersökning är att förstå mekanismen för ljud - turbulensin- teraktion i internströmning vid låga Machtal med hjälp av teoretisk modellering och numeriska simuleringar. Ljudabsorption pga turbulens kan modelleras via mod- ellering av störningar av de turbulenta Reynoldska spänningarna och störningar i den turbulenta värmetransporten i de linjäriserade störningsekvationerna. I denna avhandling går vi igenom de linjäriserade störningsekvationerna, och olika modeller för turbulent absorption av ljudvågor utreds. Dessutom presenteras en ny icke- jämviktsmodell för små störningar av de turbulenta Reynoldska spänningarna. Den föreslagna modellen utvärderas genom att de beräknade störningsfältet jämförs med experimentella data från mätningar i rör med turbulent strömning, samt med Large Eddy Simulations (LES) av turbulent strömning. God överensstämmelse kan visas. Förutom teoretisk modellering, kommer LES också att användas för att numeriskt undersöka ljud - turbulensinteraktion. Några preliminära resultat från LES presen- teras. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. viii, 55 p.
Series
Trita-AVE, ISSN 1651-7660 ; 2013:55
National Category
Fluid Mechanics and Acoustics
Research subject
Järnvägsgruppen - Ljud och vibrationer
Identifiers
urn:nbn:se:kth:diva-129319 (URN)
Presentation
2013-10-11, Sal H1, Teknikringen 33, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20130927

Available from: 2013-09-27 Created: 2013-09-26 Last updated: 2013-09-30Bibliographically approved
2. Theoretical and numerical studies of sound propagation in low-Mach-number duct flows
Open this publication in new window or tab >>Theoretical and numerical studies of sound propagation in low-Mach-number duct flows
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

When sound waves propagate in a duct in the presence of turbulent flow, turbulent mixing can cause attenuation of the sound waves extra to that caused by the viscothermal effects. Experiments show that compared to the viscothermal effects, this turbulent absorption becomes the dominant contribution to the sound attenuation at sufficiently low frequencies. The mechanism of this turbulent absorption is attributed to the turbulent stress and the turbulent heat transfer acting on the coherent perturbations (including the sound waves) near the duct wall, i.e. sound-turbulence interaction.

The purpose of the current investigation is to understand the mechanism of the sound-turbulence interaction in low-Mach-number internal flows by theoretical modeling and numerical simulations. The turbulence absorption can be modeled through perturbation turbulent Reynolds stresses and perturbation turbulent heat flux in the linearized perturbation equations. In this thesis, the linearized perturbation equations are reviewed, and different models for the turbulent absorption of the sound waves are investigated. A new non–equilibrium model for the perturbation turbulent Reynolds stress is also proposed. The proposed model is validated by comparing with experimental data from the literature, and with the data from Direct Numerical Simulations (DNS) of pulsating turbulent channel flow. Good agreement is observed. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. viii, 82 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2015:30
Keyword
Aeroacoustics, Acoustic wave absorption, Acoustic wave propagation, Boundary layer turbulence, DNS
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-168031 (URN)978-91-7595-621-3 (ISBN)
Public defence
2015-06-15, D2, Lindstedtsvägen 5, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council
Note

QC 20150526

Available from: 2015-05-26 Created: 2015-05-25 Last updated: 2015-05-26Bibliographically approved

Open Access in DiVA

WENGETAL_AIAA2013(816 kB)588 downloads
File information
File name FULLTEXT01.pdfFile size 816 kBChecksum SHA-512
c8aa109340b54353df2bc02752c1c5837c7e16468a096e7776c9260485eccfd7f9c83043ee228ebe526bc683f316b4d6daae1bc6636a159a23aed6567c64cf7f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Weng, ChenyangBoij, SusannHanifi, Ardeshir

Search in DiVA

By author/editor
Weng, ChenyangBoij, SusannHanifi, Ardeshir
By organisation
Marcus Wallenberg Laboratory MWLLinné Flow Center, FLOW
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 588 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 148 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf