Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
GAM-NGS: genomic assemblies merger for next generation sequencing
KTH, School of Computer Science and Communication (CSC). KTH, Centres, Science for Life Laboratory, SciLifeLab.
KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, Centres, Science for Life Laboratory, SciLifeLab.
Show others and affiliations
2013 (English)In: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 14, S6- p.Article in journal (Refereed) Published
Abstract [en]

Background: In recent years more than 20 assemblers have been proposed to tackle the hard task of assembling NGS data. A common heuristic when assembling a genome is to use several assemblers and then select the best assembly according to some criteria. However, recent results clearly show that some assemblers lead to better statistics than others on specific regions but are outperformed on other regions or on different evaluation measures. To limit these problems we developed GAM-NGS (Genomic Assemblies Merger for Next Generation Sequencing), whose primary goal is to merge two or more assemblies in order to enhance contiguity and correctness of both. GAM-NGS does not rely on global alignment: regions of the two assemblies representing the same genomic locus (called blocks) are identified through reads' alignments and stored in a weighted graph. The merging phase is carried out with the help of this weighted graph that allows an optimal resolution of local problematic regions. Results: GAM-NGS has been tested on six different datasets and compared to other assembly reconciliation tools. The availability of a reference sequence for three of them allowed us to show how GAM-NGS is a tool able to output an improved reliable set of sequences. GAM-NGS is also a very efficient tool able to merge assemblies using substantially less computational resources than comparable tools. In order to achieve such goals, GAM-NGS avoids global alignment between contigs, making its strategy unique among other assembly reconciliation tools. Conclusions: The difficulty to obtain correct and reliable assemblies using a single assembler is forcing the introduction of new algorithms able to enhance de novo assemblies. GAM-NGS is a tool able to merge two or more assemblies in order to improve contiguity and correctness. It can be used on all NGS-based assembly projects and it shows its full potential with multi-library Illumina-based projects. With more than 20 available assemblers it is hard to select the best tool. In this context we propose a tool that improves assemblies (and, as a by-product, perhaps even assemblers) by merging them and selecting the generating that is most likely to be correct.

Place, publisher, year, edition, pages
2013. Vol. 14, S6- p.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:kth:diva-124056DOI: 10.1186/1471-2105-14-S7-S6ISI: 000318869400006Scopus ID: 2-s2.0-84878409901OAI: oai:DiVA.org:kth-124056DiVA: diva2:633115
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20130626

Available from: 2013-06-26 Created: 2013-06-25 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Vezzi, FrancescoArvestad, Lars
By organisation
School of Computer Science and Communication (CSC)Science for Life Laboratory, SciLifeLabComputational Biology, CB
In the same journal
BMC Bioinformatics
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf