Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rapid mold-free manufacturing of microfluidic devices with robust and spatially directed surface modifications
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-9177-1174
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
Indian Institute of Technology Bombay.
Show others and affiliations
2014 (English)In: Microfluidics and Nanofluidics, ISSN 1613-4982, E-ISSN 1613-4990, Vol. 17, no 4, 773-779 p.Article in journal (Refereed) Published
Abstract [en]

A new method that allows for mold-free, rapid and easy-to-use proto- typing of micro uidic devices comprising channels, access holes and surface modied patterns, is presented. The innovative method is based on direct photolithographic patterning of an o-stoichiometry thiol-ene (OSTE) polymer formulation, tailor-made for photolithography, which oers unprecedented spatial resolution and allow for ecient, robust and reliable, room temperature surface modication and glue-free, covalent room temperature bonding. This mold-free process does not require cleanroom equipment and therefore allows for rapid, i.e. less than one hour, design-fabricate-test cycles, using a material suited for larger scale production. The excellent photolithographic properties of this new OSTE formulation allow for high-resolution patterning in hundreds of micrometers thick layers, 200 m thick in this work. Moreover, we demonstrate robust (covalent) and spatially controlled modication of the microchannel surfaces with a contact angle of 76 degrees to hydrophobic/hydrophilic areas with contact angles of 102 and 43 degrees, respectively.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2014. Vol. 17, no 4, 773-779 p.
Keyword [en]
lab-on-chip, microfluidics, photolithography, OSTE polymer, surface modi, oste, oste+, OSTEmer, lab-on-chip, off-stoichiometric thiol-ene
National Category
Nano Technology
Research subject
Biotechnology; Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-124363DOI: 10.1007/s10404-014-1351-9ISI: 000342454400016Scopus ID: 2-s2.0-84920255161OAI: oai:DiVA.org:kth-124363DiVA: diva2:634289
Projects
Rappid
Note

QC 20141027

Available from: 2013-06-29 Created: 2013-06-29 Last updated: 2017-12-06Bibliographically approved
In thesis
1. From Macro to Nano: Electrokinetic Transport and Surface Control
Open this publication in new window or tab >>From Macro to Nano: Electrokinetic Transport and Surface Control
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Today, the growing and aging population, and the rise of new global threats on human health puts an increasing demand on the healthcare system and calls for preventive actions. To make existing medical treatments more efficient and widely accessible and to prevent the emergence of new threats such as drug-resistant bacteria, improved diagnostic technologies are needed. Potential solutions to address these medical challenges could come from the development of novel lab-on-chip (LoC) for point-of-care (PoC) diagnostics.

At the same time, the increasing demand for sustainable energy calls for the development of novel approaches for energy conversion and storage systems (ECS), to which micro- and nanotechnologies could also contribute.

This thesis has for objective to contribute to these developments and presents the results of interdisciplinary research at the crossing of three disciplines of physics and engineering: electrokinetic transport in fluids, manufacturing of micro- and nanofluidic systems, and surface control and modification. By combining knowledge from each of these disciplines, novel solutions and functionalities were developed at the macro-, micro- and nanoscale, towards applications in PoC diagnostics and ECS systems.

At the macroscale, electrokinetic transport was applied to the development of a novel PoC sampler for the efficient capture of exhaled breath aerosol onto a microfluidic platform.

At the microscale, several methods for polymer micromanufacturing and surface modification were developed. Using direct photolithography in off-stoichiometry thiol-ene (OSTE) polymers, a novel manufacturing method for mold-free rapid prototyping of microfluidic devices was developed. An investigation of the photolithography of OSTE polymers revealed that a novel photopatterning mechanism arises from the off-stoichiometric polymer formulation. Using photografting on OSTE surfaces, a novel surface modification method was developed for the photopatterning of the surface energy. Finally, a novel method was developed for single-step microstructuring and micropatterning of surface energy, using a molecular self-alignment process resulting in spontaneous mimicking, in the replica, of the surface energy of the mold.

At the nanoscale, several solutions for the study of electrokinetic transport toward selective biofiltration and energy conversion were developed. A novel, comprehensive model was developed for electrostatic gating of the electrokinetic transport in nanofluidics. A novel method for the manufacturing of electrostatically-gated nanofluidic membranes was developed, using atomic layer deposition (ALD) in deep anodic alumina oxide (AAO) nanopores. Finally, a preliminary investigation of the nanopatterning of OSTE polymers was performed for the manufacturing of polymer nanofluidic devices.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xix, 113 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2014:020Theses in philosophy from the Royal Institute of Technology, ISSN 1650-8831
Keyword
microsystem, nanosystem, microfluidic, nanofluidic, surface modification, surface property, electrokinetics, model, simulation, material, polymer, thiol-ene, microfabrication, nanofabrication, micromanufacturing, nanomanufacturing, breath sampling, aerosol precipitation, corona discharge, electrostatic precipitation, grafting chemistry, click chemistry, nanopore, nanoporous membrane, photolithography, photopatterning, photografting, microfluidics, nanofluidics, oste, OSTE+, OSTEmer, lab-on-chip, loc, point-of-care, poc, biocompatibility, diagnostics, breath analysis, fuel cell
National Category
Nano Technology Other Electrical Engineering, Electronic Engineering, Information Engineering Textile, Rubber and Polymeric Materials Other Medical Engineering Polymer Technologies
Research subject
Electrical Engineering; Materials Science and Engineering; Physics; Medical Technology
Identifiers
urn:nbn:se:kth:diva-144994 (URN)978-91-7595-119-5 (ISBN)
Public defence
2014-05-23, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
RappidNanoGateNorosensor
Funder
Swedish Research CouncilEU, European Research Council
Note

QC 20140509

Available from: 2014-05-09 Created: 2014-05-05 Last updated: 2014-12-04Bibliographically approved
2. Polymer microfluidic systems for samplepreparation for bacterial detection
Open this publication in new window or tab >>Polymer microfluidic systems for samplepreparation for bacterial detection
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sepsis, caused by blood stream infection, is a very serious health condition thatrequires immediate treatment using antibiotics to increase the chances for patientsurvival. A high prevalence of antibiotic resistance among infected patients requiresstrong and toxic antibiotics to ensure effective treatment. A rapid diagnostic devicefor detection of antibiotic resistance genes in pathogens in patient blood would enablean early change to accurate and less toxic antibiotics. Although there is a pressingneed for such devices, rapid diagnostic tests for sepsis do not yet exist.In this thesis, novel advances in microfabrication and lab-on-a-chip devices arepresented. The overall goal is to develop microfluidics and lab-on-a-chip systems forrapid sepsis diagnostics. To approach this goal, novel manufacturing techniques formicrofluidics systems and novel lab-on-a-chip devices for sample preparation havebeen developed.Two key problems for analysis of blood stream infection samples are that lowconcentrations of bacteria are typically present in the blood, and that separation ofbacteria from blood cells is difficult. To ensure that a sufficient amount of bacteria isextracted, large sample volumes need to be processed, and bacteria need to be isolatedwith high efficiency. In this thesis, a particle filter based on inertial microfluidicsenabling high processing flow rates and integration with up- and downstream processesis presented.Another important function for diagnostic lab-on-a-chip devices is DNA amplificationusing polymerase chain reaction (PCR). A common source of failure for PCRon-chip is the formation of bubbles during the analysis. In this thesis, a PCR-on-chipsystem with active degassing enabling fast bubble removal through a semipermeablemembrane is presented.Several novel microfabrication methods were developed. Novel fabrication techniquesusing the polymer PDMS that enable manufacturing of complex lab-on-a-chipdevices containing 3D fluidic networks and fragile structures are presented. Also,a mechanism leading to increased accuracy in photopatterning in thiol-enes, whichenables rapid prototyping of microfluidic devices, is described. Finally, a novel flexibleand gas-tight polymer formulation for microfabrication is presented: rubbery OSTE+.Together, the described achievements lead to improved manufacturing methodsand performances of lab-on-a-chip devices, and may facilitate future development ofdiagnostic devices.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xiv, 65 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2014:038
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-151244 (URN)978-91-7595-244-4 (ISBN)
Public defence
2014-10-03, FR4 (Oskar Klein-auditoriet), Roslagstullsbacken 21, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20140916

Available from: 2014-09-17 Created: 2014-09-15 Last updated: 2014-09-19Bibliographically approved

Open Access in DiVA

fulltext(11051 kB)184 downloads
File information
File name FULLTEXT01.pdfFile size 11051 kBChecksum SHA-512
f460d368aa80be5b6baaa127571962be7b8b1f9882f70e15c14699dfe4983e41008a42387ea62cbedf3f839ad7ff079ca64e5fb1fce9880fe9d557dcc68405dc
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Pardon, Gaspardvan der Wijngaart, WouterHaraldsson, Tommy

Search in DiVA

By author/editor
Pardon, GaspardSaharil, FarizahKarlsson, J. MikaelCarlborg, Carl Fredrikvan der Wijngaart, WouterHaraldsson, Tommy
By organisation
Micro and Nanosystems
In the same journal
Microfluidics and Nanofluidics
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 184 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 756 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf