Change search
ReferencesLink to record
Permanent link

Direct link
Endothelial microvascular networks affect gene-expression profiles and osteogenic potential of tissue-engineered constructs
Show others and affiliations
2013 (English)In: STEM CELL RES THER, ISSN 1757-6512, Vol. 4, 52- p.Article in journal (Refereed) Published
Abstract [en]

Introduction: A major determinant of the potential size of cell/scaffold constructs in tissue engineering is vascularization. The aims of this study were twofold: first to determine the in vitro angiogenic and osteogenic geneexpression profiles of endothelial cells (ECs) and mesenchymal stem cells (MSCs) cocultured in a dynamic 3D environment; and second, to assess differentiation and the potential for osteogenesis after in vivo implantation. Methods: MSCs and ECs were grown in dynamic culture in poly(L-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) copolymer scaffolds for 1 week, to generate three-dimensional endothelial microvascular networks. The constructs were then implanted in vivo, in a murine model for ectopic bone formation. Expression of selected genes for angiogenesis and osteogenesis was studied after a 1-week culture in vitro. Human cell proliferation was assessed as expression of ki67, whereas a-smooth muscle actin was used to determine the perivascular differentiation of MSCs. Osteogenesis was evaluated in vivo through detection of selected markers, by using real-time RT-PCR, alkaline phosphatase (ALP), Alizarin Red, hematoxylin/eosin (HE), and Masson trichrome staining. Results: The results show that endothelial microvascular networks could be generated in a poly(LLA-co-DXO) scaffold in vitro and sustained after in vivo implantation. The addition of ECs to MSCs influenced both angiogenic and osteogenic gene-expression profiles. Furthermore, human ki67 was upregulated before and after implantation. MSCs could support functional blood vessels as perivascular cells independent of implanted ECs. In addition, the expression of ALP was upregulated in the presence of endothelial microvascular networks. Conclusions: This study demonstrates that copolymer poly(LLA-co-DXO) scaffolds can be prevascularized with ECs and MSCs. Although a local osteoinductive environment is required to achieve ectopic bone formation, seeding of MSCs with or without ECs increases the osteogenic potential of tissue-engineered constructs.

Place, publisher, year, edition, pages
2013. Vol. 4, 52- p.
Keyword [en]
Tissue engineering, Endothelial cells, Mesenchymal stem cells, Copolymer, Osteogenesis
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-124290DOI: 10.1186/scrt202ISI: 000319653600001ScopusID: 2-s2.0-84877801008OAI: diva2:634707

QC 20130701

Available from: 2013-07-01 Created: 2013-06-28 Last updated: 2013-07-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Sun, YangFinne-Wistrand, Anna
By organisation
Polymer Technology
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 63 hits
ReferencesLink to record
Permanent link

Direct link