Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessment of arsenic exposure risk from drinking water and dietary component in West Bengal, India
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
University of Kalyani, India.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.ORCID iD: 0000-0003-4350-9950
Show others and affiliations
2013 (English)Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

The current status of arsenic (As) exposure risk from drinking water and different dietary components in rural Bengal has been compared in the present study. This study shows that the consumption of rice is the major source of dietary intake of inorganic As among the population when they are drinking As safe water. Consumption of vegetables does not pose a significant health threat to the population independently; it nevertheless can increase the total daily intake of inorganic As (TDI-iAs). The results indicate that when people are drinking water with As concentration <10 μg L-1, in 35% of the cases the total daily intake of inorganic As (TDI-iAs) exceeds the previous provisional tolerable daily intake (PTDI) value of 2.1 μg day-1 kg-1 BW, recommended by World Health Organization (WHO). It should be mention here that the joint FAO/WHO expert committee on food additives (JECFA) has withdrawn the previous PTDI value in their 72nd meeting because PTDI value was in the lower range of bench mark dose level for 0.5% increased of lung cancer. However, Codex Committee on Contaminants in Foods (CCCF) has argued that TDI-iAs below BMDL0.5 does not indicates that there is no risk and this motivated us to compare TDI-iAs of the participants with the previous PTDI value of 2.1 μg day-1 kg-1 bw. At the As concentration level <10 μg L-1in drinking water, the consumption of rice is the major source of daily intake of inorganic As. When As concentration in drinking water exceeds 10 μg L-1, drinking water and rice consumption contributes almost equally (~40% from rice, ~50% from drinking water, and 10% from vegetables according to median DI-iAs) and TDI-iAs exceeds previous PTDI for all the participants. The relative contribution of daily intake of iAs from drinking water (DI-iAs-DW) largely predominates over daily intake of iAs from rice (DI-iAs-R) when As concentration in drinking water exceeds 50 μg L-1. This study implies that when consumption of rice contributes significantly to the TDI-iAs, supply of drinking water to the population considering national drinking water standard of India and Bangladesh as a safety measure for As might compound the As exposure largely by increasing TDI-iAs. Thus it can be concluded that any effort to mitigate the As poisoning of rural villagers in Bengal must look beyond the drinking water and consider all the routes of exposure.

Place, publisher, year, edition, pages
Athens, Georgia, 2013.
National Category
Geochemistry
Identifiers
URN: urn:nbn:se:kth:diva-124511OAI: oai:DiVA.org:kth-124511DiVA: diva2:635909
Conference
12th International Conference on the Biogeochemistry of Trace Elements (ICOBTE), June 16-20, Athens, USA
Note

QC 20140127

Available from: 2013-07-07 Created: 2013-07-07 Last updated: 2016-11-25Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.icobte2013.org/ICOBTE_2013_files/ICOBTE%20Abstracts/460.pdf

Search in DiVA

By author/editor
Halder, DiptiBiswas, AshisBhattacharya, ProsunJacks, Gunnar
By organisation
Environmental Geochemistry and Ecotechnology
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 115 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf