Change search
ReferencesLink to record
Permanent link

Direct link
A Texture Based Pattern Recognition Approach to Distinguish Melanoma from Non-Melanoma Cells in Histopathological Tissue Microarray Sections
Show others and affiliations
2013 (English)In: PLoS ONE, ISSN 1932-6203, Vol. 8, no 5, e62070- p.Article in journal (Refereed) Published
Abstract [en]

Aims: Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Methods and Results: Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Conclusion: Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.

Place, publisher, year, edition, pages
2013. Vol. 8, no 5, e62070- p.
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:kth:diva-124462DOI: 10.1371/journal.pone.0062070ISI: 000319107900004ScopusID: 2-s2.0-84877850701OAI: diva2:636177
Knut and Alice Wallenberg Foundation

QC 20130709

Available from: 2013-07-09 Created: 2013-07-05 Last updated: 2013-07-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Uhlén, MathiasLundberg, Emma
By organisation
Proteomics (closed 20130101)Science for Life Laboratory, SciLifeLab
In the same journal
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link