Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temperature dependent magnetic properties of CoFe2O4/CTAB nanocomposite synthesized by sol gel auto-combustion technique
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.ORCID iD: 0000-0001-5678-5298
2013 (English)In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 39, no 6, 6551-6558 p.Article in journal (Refereed) Published
Abstract [en]

A CoFe2O4/cetyl trimethylammonium bromide (CTAB) nanocomposite has been fabricated by a sol gel auto-combustion method. Characterization of the material revealed the composition of the crystalline phase as CoFe2O4 while FT-IR confirmed the presence of CTAB on the nanoparticles. From X-ray line profile fitting, average crystallite size was estimated to be 22 +/- 6 nm. SEM analysis showed a porous sheet-like morphology with internal nanosize grains of about 30 nm. The room temperature coercive field (He) of the CoFe2O4/CTAB nanocomposite was found to be 1045 Oe which is close to the previously reported room temperature values for bulk CoFe2O4. The H-c, was observed to decrease almost linearly with the square root of the temperature (root T) according to Kneller's law. From the linear fit of H-c versus root T, the zero-temperature coercivity (H-c0) and superparamagnetic blocking temperature (T-B) of the CoFe2O4/CTAB nanocomposite were found to be similar to 9.1 kOe and similar to 425 K, respectively. The remanence magnetization (M-r), the reduced remanent magnetization (M-r/M-s), and the effective magnetic anisotropy (K-eff) decrease with increasing temperature. The M-r/M-s value of 0.6 at 10 K higher than the theoretical value of 0.5 for non-interacting single domain particles with the easy axis randomly oriented suggests the CoFe2O4/CTAB nanocomposite to have cubic magnetocrystalline anisotropy according to the Stoner Wohlfarth model.

Place, publisher, year, edition, pages
2013. Vol. 39, no 6, 6551-6558 p.
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-124614DOI: 10.1016/j.ceramint.2013.01.088ISI: 000320295300067Scopus ID: 2-s2.0-84877688609OAI: oai:DiVA.org:kth-124614DiVA: diva2:637579
Note

QC 20130719

Available from: 2013-07-19 Created: 2013-07-19 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Toprak, M. S.

Search in DiVA

By author/editor
Toprak, M. S.
By organisation
Functional Materials, FNM
In the same journal
Ceramics International
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 103 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf