Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
One-Stage Tissue Engineering of Bladder Wall Patches for an Easy-To-Use Approach at the Surgical Table
Department of Chemistry, Division of Polymer Chemistry, Uppsala University, Sweden.ORCID iD: 0000-0003-1161-9311
Show others and affiliations
2013 (English)In: Tissue Engineering. Part C, Methods, ISSN 1937-3384, E-ISSN 1937-3392, Vol. 19, no 9, 688-696 p.Article in journal (Refereed) Published
Abstract [en]

We present a method for producing a cell-scaffold hybrid construct at the bedside. The construct is composed of plastic-compressed collagen together with a poly(e-caprolactone) (PCL)-knitted mesh that yields an integrated, natural-synthetic scaffold. This construct was evaluated by seeding of minced bladder mucosa, followed by proliferation in vitro. High mechanical strength in combination with a biological environment suitable for tissue growth was achieved through the creation of a hybrid construct that showed an increased tensile strength (17.9 +/- 2.6 MPa) when compared to plastic-compressed collagen (0.6 +/- 0.12 MPa). Intimate contact between the collagen and the PCL fabric was required to ensure integrity without delamination of the construct. This contact was achieved by surface alkaline hydrolysis of the PCL, followed by adsorption of poly(vinyl) alcohol. The improvement in hydrophilicity of the PCL-knitted mesh was confirmed through water contact angle measurements, and penetration of the collagen into the mesh was evaluated by scanning electron microscopy (SEM). Particles of minced bladder mucosa tissue were seeded onto this scaffold, and the proliferation was followed for 6 weeks in vitro. Results obtained from phase contrast microscopy, SEM, and histological staining indicated that cells migrated from the minced tissue particles and reorganized on the scaffold. Cells were viable and proliferative, with morphological features characteristic of urothelial cells. Proliferation reached the point at which a multilayer with a resemblance to stratified urothelium was achieved. This successful method could potentially be used for in vivo applications in reconstructive urology as an engineered autologous tissue transplant without the requirement for in vitro culture before transplantation.

Place, publisher, year, edition, pages
2013. Vol. 19, no 9, 688-696 p.
Keyword [en]
Alkaline hydrolysis, Autologous tissue, Biological environments, High mechanical strength, Hybrid constructs, Morphological features, Phase-contrast microscopy, Water contact angle measurement
National Category
Medical Materials
Identifiers
URN: urn:nbn:se:kth:diva-124759DOI: 10.1089/ten.tec.2012.0633ISI: 000322117900003Scopus ID: 2-s2.0-84880621672OAI: oai:DiVA.org:kth-124759DiVA: diva2:638407
Note

QC 20140603

Available from: 2013-07-30 Created: 2013-07-30 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Rojas, Ramiro

Search in DiVA

By author/editor
Rojas, Ramiro
In the same journal
Tissue Engineering. Part C, Methods
Medical Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 98 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf