Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exergetic efficiency of high-temperature-lift chemical heat pump (CHP) based on CaO/CO2 and CaO/H2O working pairs
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.ORCID iD: 0000-0001-6801-9208
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
2013 (English)In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 37, no 9, 1122-1131 p.Article in journal (Refereed) Published
Abstract [en]

The use of reversible chemical reactions in recuperation of heat has gained significant interest due to higher magnitude of reaction heat compared to that of the latent or sensible heat. To implement chemical reactions for upgrading heat, a chemical heat pump (CHP) may be used. A CHP uses a reversible chemical reaction where the forward and the reverse reactions take place at two different temperatures, thus allowing heat to be upgraded or degraded depending on the mode of operation. In this work, an exergetic efficiency model for a CHP operating in the temperature-level amplification mode has been developed. The first law and the exergetic efficiencies are compared for two working pairs, namely, CaO/CO2 and CaO/H2O for high-temperature high-lift CHPs. The exergetic efficiency increases for both working pairs with increase in task, TH, decrease in heat source, TM, and increase in condenser, TL, temperatures. It is also observed that the difference in reaction enthalpies and specific heats of the involving reactants affects the extent of increase or decrease in the exergetic efficiency of the CHP operating for temperature-level amplification.

Place, publisher, year, edition, pages
Wiley-Blackwell, 2013. Vol. 37, no 9, 1122-1131 p.
Keyword [en]
chemical heat pump (CHP), first law efficiency, second law (exergetic) efficiency, temperature amplification, heat transformer, CaO, CO2, H2O
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:kth:diva-124964DOI: 10.1002/er.2918ISI: 000320386600012Scopus ID: 2-s2.0-84879228964OAI: oai:DiVA.org:kth-124964DiVA: diva2:638810
Note

QC 20130802

Available from: 2013-08-02 Created: 2013-08-02 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Arjmand, MehdiLiu, LongchengNeretnieks, Ivars
By organisation
Chemical Engineering and TechnologyChemical Engineering
In the same journal
International journal of energy research (Print)
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 122 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf