Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Validation and analysis of numerical results for a two-pass trapezoidal channel with different cooling configurations of trailing edge
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2012 (English)In: Proceedings of the ASME Turbo Expo 2011, Vol 5, Parts A And B, American Society Of Mechanical Engineers , 2012, 1571-1581 p.Conference paper, Published paper (Refereed)
Abstract [en]

High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. Especially the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer therefore for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at trailing edge surface in-line with the ribs at bottom surface and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re kappa-epsilon model, realizable kappa-epsilon model, the RNG kappa-omega model, low-Re kappa-omega model and SST kappa-omega models are compared, whereas for ribbed channel low-Re kappa-omega model and SST kappa-omega models are compared. The results show that the low-Re k-epsilon model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to experimental data. Using the same turbulence model shows that the height of ribs used in the study is not suitable for inducing secondary flow. Also, the orthogonal rib does not strengthen the secondary flow rotational momentum. The comparison between the new designs for trailing edge shows that if pressure drop is acceptable, staggered arrangement is suitable for the outlet pass heat transfer. For the trailing edge wall, the thermal performancefor ribbed trailing edge only, was found about 8% better than other configurations.

Place, publisher, year, edition, pages
American Society Of Mechanical Engineers , 2012. 1571-1581 p.
Keyword [en]
Exhibitions, Gas turbines, Pressure drop, Reynolds number, Secondary flow, Turbulence models
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-125723ISI: 000321076300140Scopus ID: 2-s2.0-84865483767ISBN: 978-0-7918-5465-5 (print)OAI: oai:DiVA.org:kth-125723DiVA: diva2:640317
Conference
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011; Vancouver, BC; Canada; 6 June 2011 through 10 June 2011
Note

QC 20140903

Available from: 2013-08-13 Created: 2013-08-13 Last updated: 2014-09-03Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Siddique, WaseemShevchuk, Igor V.Fransson, Torsten H.
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf