Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dual-purpose PEG scaffolds for the preparation of soft and biofunctional hydrogels: the convergence between CuAAC and thiol-ene reactions
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
Show others and affiliations
2013 (English)In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 49, no 62, 6938-6940 p.Article in journal (Refereed) Published
Abstract [en]

Orthogonally functionalized PEGs displaying alkenes and azides have been prepared and their dual-purpose scaffolding potential was exploited via click chemistry for controlled insertion of bio-relevant moieties as well as facile fabrication of soft, non-toxic and degradable hydrogels.

Place, publisher, year, edition, pages
2013. Vol. 49, no 62, 6938-6940 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-125778DOI: 10.1039/c3cc42084aISI: 000321576000002Scopus ID: 2-s2.0-84882247505OAI: oai:DiVA.org:kth-125778DiVA: diva2:640794
Funder
VinnovaSwedish Research Council, 2011-5358 2010-453
Note

QC 20130814

Available from: 2013-08-14 Created: 2013-08-13 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applications
Open this publication in new window or tab >>Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applications
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of materials for advanced applications requires innovative macromolecules with well-defined structures and the inherent ability to be tailored in a straightforward manner. Dendrimers, being a subgroup of the dendritic polymer family, possess properties which fulfill such demands. They have a highly branched architecture with a high number of functional groups and are one of the most well-defined types of macromolecules ever synthesized. However, despite their well-defined nature and high functional density, traditional dendrimers commonly lack diverse chemical functionalities. Therefore, this thesis focuses on the synthesis of more complex dendritic materials to extend their tailoring capacity by introduction of dualfunctionalities for multipurpose actions. It covers the synthesis of dualfunctional dendrimers, dendritic modification of linear poly(ethylene glycol) polymers and cellulose surfaces, and the synthesis of linear dendritic hybrids. The building blocks enabling this synthesis, AB2C monomers, were also developed during this work. The orthogonal nature between click groups (azide, alkyne and alkene) and hydroxyl groups have efficiently been utilized for postfunctionalization by robust click chemistry and traditional esterification reactions. Furthermore, linear dendritic hybrids were synthesized, merging the properties of linear and dendritic macromolecules. The dendritic frameworks were tailored towards the production of bone fracture adhesives, novel biofunctional dendritic hydrogels, biosensors and micellar drug delivery vehicles.

Abstract [sv]

Utveckling av material för avancerade applikationer kräver innovativa makromolekyler med väldefinierade strukturer och som kan skräddarsys på ett enkelt sätt. Dendrimerer är en undergrupp av dendritiska polymerer vars egenskaper uppfyller dessa krav. De har en mycket förgrenad arkitektur med många funktionella grupper och är en av de mest väldefinierade befintliga syntetiska makromolekylerna. Trots dess väldefinierade karaktär och höga funktionalitet saknar ofta traditionella dendrimerer multipla kemiska funktionaliteter. Denna avhandling fokuserar därför på syntesen av mer komplexa dendritiska material för att förbättra deras kapacitet att skräddarsys, detta görs genom att introducera fler funktionaliteter som kan utnyttjas för multipla ändamål . Avhandlingen redogör för syntesen av difunktionella dendrimerer, dendritiska modifikationer av polyetylenglykol och cellulosaytor samt syntes av traditionella dendritiska hybrider. Byggstenarna som möjliggör syntesen, AB2C monomerer, framställdes också under detta arbete. Den ortogonala karaktären mellan klick grupper (azid, alkyn och alkene) och hydroxylgrupper har utnyttjats effektivt för funktionaliseringar genom användande av robust ”Click”-kemi och traditionella esterifikationsreaktioner. Vidare tillverkades de linjära dendritiska hybrider för att kombinera egenskaperna hos både linjära och traditionella dendritiska polymerer i en och samma makromolekyl. Samtliga dendritiska strukturer skräddarsyddes för applikationer så som benlimmer, biofunktionella dendritiska hydrogeler, biosensorer och läkemedels-bärande miceller.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 87 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2013:32
Keyword
Dendrimer, AB2C monomer, Click chemistry, CuAAC, thiol-ene coupling chemistry, TEC, linear dendritic hybrids, micelle, hydrogel, bone adhesive
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-127429 (URN)978-91-7501-817-1 (ISBN)
Public defence
2013-09-20, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20130830

Available from: 2013-08-30 Created: 2013-08-29 Last updated: 2013-08-30Bibliographically approved
2. Advanced polymeric scaffolds for functional materials in biomedical applications
Open this publication in new window or tab >>Advanced polymeric scaffolds for functional materials in biomedical applications
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Advancements in the biomedical field are driven by the design of novel materials with controlled physical and bio-interactive properties. To develop such materials, researchers rely on the use of highly efficient reactions for the assembly of advanced polymeric scaffolds that meet the demands of a functional biomaterial. In this thesis two main strategies for such materials have been explored; these include the use of off-stoichiometric thiol-ene networks and dendritic polymer scaffolds. In the first case, the highly efficient UV-induced thiol-ene coupling (TEC) reaction was used to create crosslinked polymeric networks with a predetermined and tunable excess of thiol or ene functionality. These materials rely on the use of readily available commercial monomers. By adopting standard molding techniques and simple TEC surface modifications, patterned surfaces with tunable hydrophobicity could be obtained. Moreover, these materials are shown to have great potential for rapid prototyping of microfluidic devices. In the second case, dendritic polymer scaffolds were evaluated for their ability to increase surface interactions and produce functional 3D networks. More specifically, a self-assembled dendritic monolayer approach was explored for producing highly functional dendronized surfaces with specific interactions towards pathogenic E. coli bacteria. Furthermore, a library of heterofunctional dendritic scaffolds, with a controllable and exact number of dual-purpose azide and ene functional groups, has been synthesized. These scaffolds were explored for the production of cell interactive hydrogels and primers for bone adhesive implants. Dendritic hydrogels decorated with a selection of bio-relevant moieties and with Young’s moduli in the same range as several body tissues could be produced by facile UV-induced TEC crosslinking. These gels showed low cytotoxic response and relatively rapid rates of degradation when cultured with normal human dermal fibroblast cells. When used as primers for bone adhesive patches, heterofunctional dendrimers with high azide-group content led to a significant increase in the adhesion between a UV-cured hydrophobic matrix and the wet bone surface (compared to patches without primers).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. 72 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2014:1
Keyword
Dendrimer, hydrogel, PEG, dendritic monolayers, thiol-ene networks, off-stochiometric
National Category
Polymer Technologies Medical Materials Materials Chemistry Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-139944 (URN)978-91-7501-978-9 (ISBN)
Public defence
2014-01-31, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20140116

Available from: 2014-01-16 Created: 2014-01-15 Last updated: 2014-01-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Malkoch, Michael

Search in DiVA

By author/editor
Öberg, KimHed, YvonneJoelsson Rahmn, IsabellaMalkoch, Michael
By organisation
Coating Technology
In the same journal
Chemical Communications
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 197 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf