Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
N2O emissions from a one stage partial nitrification/anammox process in moving bed biofilm reactors
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
2013 (English)In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 68, no 1, 144-152 p.Article in journal (Refereed) Published
Abstract [en]

Nitrous oxide (N2O) emissions from wastewater treatment are getting increased attention because their global warming potential is around 300 times that of carbon dioxide. The aim of the study was to measure nitrous oxide emissions from one stage partial nitrification/anammox (Anaerobic Ammonium Oxidation) reactors, where nitrogen is removed in a biological way. The first part of the experimental study was focused on the measurements of nitrous oxide emissions from two pilot scale reactors in the long term; one reactor with intermittent aeration at 25 degrees C and the other reactor with continuous aeration at 22-23 degrees C. The second part of the experiment was done to evaluate the influence of different nitrogen loads and aeration strategies, described by the ratio between the non-aerated and aerated phase and the dissolved oxygen concentrations, on nitrous oxide emissions from the process. The study showed that 0.4-2% of the nitrogen load was converted into nitrous oxide from two reactors. With higher nitrogen load, the amount of nitrous oxide emission was also higher. A larger fraction of nitrous oxide was emitted to the gas phase while less was emitted with the liquid effluent. It was also found that nitrous oxide emissions were similar under intermittent and continuous aeration.

Place, publisher, year, edition, pages
2013. Vol. 68, no 1, 144-152 p.
Keyword [en]
gas phase, liquid phase, moving bed biofilm reactor (MBBR), nitrous oxide emissions, one stage partial nitrification/anammox process
National Category
Water Engineering
Identifiers
URN: urn:nbn:se:kth:diva-125788DOI: 10.2166/wst.2013.232ISI: 000321336600017Scopus ID: 2-s2.0-84881161081OAI: oai:DiVA.org:kth-125788DiVA: diva2:640855
Funder
Formas
Note

QC 20130814

Available from: 2013-08-14 Created: 2013-08-13 Last updated: 2017-12-06Bibliographically approved
In thesis
1. The deammonification in Moving Bed Biofilm Reactors
Open this publication in new window or tab >>The deammonification in Moving Bed Biofilm Reactors
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Deammonification process appears to be a good alternative to treat reject water. In this thesis, control strategies were studied at pilot scale in order to optimise the deammonification process operated in a Moving Bed Biofilm Reactor (MBBR) for reject water treatment. The processes were monitored by microbial activity tests, Specific Anammox Activity (SAA), Oxygen Uptake Rate (OUR), and Nitrate Uptake Rate (NUR) tests, in order to measure the anammox, ammonium/nitrite oxidizers and denitrifiers activity. Aeration and redox as control parameters were tested. The results showed that intermittent aeration, with 15min non-aerated period in a one hour cycle, could reduce the aeration time without loss of process efficiency. A redox value of pE=0 gave the best operational condition even if there were different nitrogen loads applied in the system.

Pilot scale deammonification MBBR was tested towards to mainstream conditions. The reactor was run at different temperatures (25-19°C) to test the process stability and it was seen that the process started to become unstable when the temperature was at 19°C. Moreover, the combined treatment line, Upflow Anaerobic Sludge Blanket (UASB) reactor and MBBR with deammonification process, was established with the aim of being applied in mainstream treatment. The study results indicated that when the influent of the deammonification process shifted from reject water to UASB effluent (NH4+-N=100 mg/l), the process began to show unstable performance.

N2O was measured and compared in the deammonification process treating reject water in this study. Between 0.4% and 2 % of the nitrogen load was converted to N2O in pilot and full scale studies. The results indicated that there was no significant emission difference when the process was performed with continuous or intermittent aeration; the production and consumption of N2O was dependent on the nitrogen loads and DO concentration applied in the system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 41 p.
Series
TRITA-LWR. PHD, ISSN 1650-8602 ; 2016:05
National Category
Environmental Engineering
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-185942 (URN)978-91-7595-920-7 (ISBN)
Public defence
2016-05-18, Sal F3, indstedtsvägen 26, Stockholm, 09:30 (English)
Opponent
Supervisors
Note

QC 20160429

Available from: 2016-04-29 Created: 2016-04-29 Last updated: 2016-04-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Yang, JingjingTrela, JozefPlaza, Elzbieta
By organisation
Land and Water Resources Engineering
In the same journal
Water Science and Technology
Water Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf