Change search
ReferencesLink to record
Permanent link

Direct link
Thermal energy storage strategies for effective closed greenhouse design
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Thermal Energy Storage)ORCID iD: 55260338500
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Thermal Energy Storage)ORCID iD: 0000-0001-9556-552X
2013 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 109, 337-343 p.Article in journal (Refereed) Published
Abstract [en]

The closed greenhouse is an innovative concept in sustainable energy management. In principle, it is designed to maximize the utilization of solar energy through the seasonal storage. In a fully closed greenhouse, there is not any ventilation window. Therefore, the excess sensible and latent heat must be removed, and can be stored using seasonal and/or daily thermal storage technology. This stored excess heat can then be utilized later in order to satisfy the thermal load of the greenhouse. Thermal energy storage (TES) system should be designed based on the heating and cooling load in each specific case. Underground thermal energy storage (UTES) is most commonly chosen as seasonal storage. In addition, a stratified chilled water (SCW) storage or a phase change material (PCM) storage could be utilized as short term storage system in order to cover the daily demands and peak loads. In this paper, a qualitative economical assessment of the concept is presented. Here, a borehole thermal energy storage (BTES) system is considered as the seasonal storage, with a PCM or a SCW daily storage system to manage the peak load. A BTES primarily stores low temperature heat such that a heat pump would be needed to supply the heat at a suitable temperature. A theoretical model has been developed using TRNSYS to carry out the energy analysis. From the economical feasibility assessment, the results show that the concept has the potential of becoming cost effective. The major investment for the closed greenhouse concept could be paid within 7-8 years with the savings in auxiliary fossil fuel considering the seasonal TES systems. However, the payback time may be reduced to 5 years if the base load is chosen as the design load instead of the peak load. In this case, a short-term TES needs to be added in order to cover the hourly peak loads.

Place, publisher, year, edition, pages
2013. Vol. 109, 337-343 p.
Keyword [en]
Heat transfer, Energy conservation, Closed greenhouse, Solar commercial building, Sustainable energy management system, Thermal energy storage system
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-125836DOI: 10.1016/j.apenergy.2012.12.065ISI: 000321724000038ScopusID: 2-s2.0-84879288674OAI: diva2:641059

QC 20130815

Available from: 2013-08-15 Created: 2013-08-15 Last updated: 2013-09-10Bibliographically approved
In thesis
1. Energy Management in Large scale Solar Buildings: The Closed Greenhouse Concept
Open this publication in new window or tab >>Energy Management in Large scale Solar Buildings: The Closed Greenhouse Concept
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Sustainability has been at the centre of global attention for decades. One of the most challenging areas toward sustainability is the agricultural sector. Here, the commercial greenhouse is one of the most effective cultivation methods with a yield per cultivated area up to 10 times higher than for open land farming. However, this improvement comes with a higher energy demand. Therefore, the significance of energy conservation and management in the commercial greenhouse has been emphasized to enable cost efficient crop production. This Doctoral Thesis presents an assessment of energy pathways for improved greenhouse performance by reducing the direct energy inputs and by conserving energy throughout the system.

A reference theoretical model for analyzing the energy performance of a greenhouse has been developed using TRNSYS. This model is verified using real data from a conventional greenhouse in Stockholm (Ulriksdal). With this, a number of energy saving opportunities (e.g. double glazing) were assessed one by one with regards to the impact on the annual heating, cooling and electricity demand. Later, a multidimensional energy saving method, the “Closed Greenhouse”, was introduced. The closed greenhouse is an innovative concept with a combination of many energy saving opportunities. In the ideal closed greenhouse configuration, there are no ventilation windows, and the excess heat, in both sensible and latent forms, needs to be stored using a seasonal thermal energy storage. A short term (daily) storage can be used to eliminate the daily mismatch in the heating and cooling demand as well as handling the hourly fluctuations in the demand.

The key conclusion form this work is that the innovative concept “closed greenhouse” can be cost-effective, independent of fossil fuel and technically feasible regardless of climate condition. For the Nordic climate case of Sweden, more than 800 GWh can be saved annually, by converting all conventional greenhouses into this concept. Climate change mitigation will follow, as a key impact towards sustainability.

In more detail, the results show that the annual heating demand in an ideal closed greenhouse can be reduced to 60 kWhm-2 as compared to 300 kWhm-2 in the conventional greenhouse. However, by considering semi-closed or partly closed greenhouse concepts, practical implementation appears advantageous. The required external energy input for heating purpose can still be reduced by 25% to 75% depending on the fraction of closed area. The payback period time for the investment in a closed greenhouse varies between 5 and 8 years depending on the thermal energy storage design conditions. Thus, the closed greenhouse concept has the potential to be cost effective.

Following these results, energy management pathways have been examined based on the proposed thermo-economic assessment. From this, it is clear that the main differences between the suggested scenarios are the type of energy source, as well as the cooling and dehumidification strategies judged feasible, and that these are very much dependent on the climatic conditions

Finally, by proposing the “solar blind” concept as an active system, the surplus solar radiation can be absorbed by PVT panels and stored in thermal energy storage for supplying a portion of the greenhouse heating demand. In this concept, the annual external energy input for heating purpose in a commercial closed greenhouse with solar blind is reduced by 80%, down to 62 kWhm-2 (per unit of greenhouse area), as compared to a conventional configuration. Also the annual total useful heat gain and electricity generation, per unit of greenhouse area, by the solar blind in this concept is around 20 kWhm-2 and 80 kWhm-2, respectively. The generated electricity can be used for supplying the greenhouse power demand for artificial lighting and other devices. Typically, the electricity demand for a commercial greenhouse is about 170 kWhm-2. Here, the effect of “shading” on the crop yield is not considered, and would have to be carefully assessed in each case.

Abstract [sv]

Hållbarhet har legat i fokus under decennier. En av de mest utmanande områdena är jordbrukssektorn, där. kommersiella växthus är ett av de mest effektiva odlingsalternativen med en avkastning per odlad yta upp till 10 gånger högre än för jordbruk på friland. Dock kommer denna förbättring med ett högre energibehov. Därför är energieffektivisering i kommersiella växthus viktig för att möjliggöra kostnadseffektiv odling. Denna doktorsavhandling presenterar en utvärdering av olika energiscenarios för förbättring av växthusens prestanda genom att minska extern energitillförsel och spara energi genom i systemet som helhet.

För studien har en teoretisk modell för analys av energiprestanda i ett växthus utvecklats med hjälp av TRNSYS. Denna modell har verifierats med hjälp av verkliga data från ett konventionellt växthus i Stockholm (Ulriksdal). Med denna modell har ett antal energibesparingsåtgärder (som dubbelglas) bedömts med hänsyn till de totala värme-, kyl-och elbehoven. En flerdimensionell metod för energibesparing, det s.k. "slutna växthuset", introduceras. Det slutna växthuset är ett innovativt koncept som är en kombination av flera energibesparingsmöjligheter. I den ideala slutna växthuskonfigurationen finns det inga ventilationsfönster och värmeöverskott, både sensibel och latent, lagras i ett energilager för senare användning. Daglig lagring kan användas för att eliminera den dagliga obalansen i värme-och kylbehovet. Ett säsongslager introduceras för att möjliggöra användandet av sommarvärme för uppvärmning vintertid.

Den viktigaste slutsatsen från detta arbete är att ett sådant innovativt koncept, det "slutna växthuset" kan vara kostnadseffektiv, oberoende av fossila bränslen och tekniskt genomförbart oavsett klimatförhållanden. För det svenska klimatet kan mer än 800 GWh sparas årligen, genom att konvertera alla vanliga växthus till detta koncept. Det årliga värmebehovet i ett idealiskt slutet växthus kan reduceras till 60 kWhm-2 jämfört med 300 kWhm-2 i ett konventionellt växthus. Energibesparingen kommer även att minska miljöpåverkan.

Även ett delvis slutet växthus, där en del av ytan är slutet, eller där viss kontrollerad ventilation medges, minskar energibehovet samtidigt som praktiska fördelar har kunnat påvisas. Ett delvis slutet växthus kan minska energibehovet för uppvärmning med mellan 25% och 75% beroende på andelen sluten yta. En framräknad återbetalningstid för investeringen i ett slutet växthus varierar mellan 5 och 8 år beroende på design av energilagringssystemet. Sålunda har det slutna växthuskonceptet potential att vara kostnadseffektiv.

Mot bakgrund av dessa lovande resultat har sedan scenarios för energy management analyserats med hänsyn till termo-ekonomiska faktorer. Från detta är det tydligt att de viktigaste skillnaderna mellan de föreslagna scenarierna är den typ av energikälla, samt kyl- och avfuktningsstrategier som används, och dessa val är mycket beroende av klimatförhållandena.

Slutligen, föreslås ett nytt koncept, en s.k. "solpersienn", vilket är ett aktivt system där överskottet av solstrålningen absorberas av PVT-paneler och lagras i termiskenergilager för att tillföra en del av växthuseffekten värmebehov. I detta koncept minskar den årliga externa energitillförseln för uppvärmning i ett slutet växthus med 80%, ner till 62 kWhm-2. Den totala värme- och elproduktionen, med konceptet "solpersienn" blir cirka 20 kWhm-2 respektive 80 kWhm-2. Elproduktion kan användas för artificiell belysning och annan elektrisk utrustning i växthuset.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 149 p.
TRITA-KRV, ISSN 1100-7990 ; 13:07
Thermal Energy Storage, Energy Saving, Thermoeconomic Assessment, Energy Management Scenario, Micro Climate Control, Solar Building, Closed Greenhouse
National Category
Energy Engineering Energy Systems
Research subject
SRA - Energy
urn:nbn:se:kth:diva-127911 (URN)978-91-7501-851-5 (ISBN)
Public defence
2013-09-27, M235, Brinellvägen 68, KTH, Stockholm, 09:00 (English)

QC 20130910

Available from: 2013-09-10 Created: 2013-09-09 Last updated: 2014-01-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Vadiee, AmirMartin, Viktoria
By organisation
Heat and Power Technology
In the same journal
Applied Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 131 hits
ReferencesLink to record
Permanent link

Direct link