Change search
ReferencesLink to record
Permanent link

Direct link
Magnetic ordering and physical stability of X2Mn1+xSn1-x (X = Ru, Os, Co, Rh, Ni, Pd, Cu, and Ag) Heusler alloys from a first-principles study
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Physics Department, Uppsala University.
Show others and affiliations
2013 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 88, no 1, 014109- p.Article in journal (Refereed) Published
Abstract [en]

The magnetic ordering and its effect on the physical stability of X2Mn1+xSn1-x (0 <= x <= 0.5, and X = Ru, Os, Co, Rh, Ni, Pd, Cu, and Ag) Heusler alloys are investigated systematically by the use of first-principles method. It is found that the ferromagnetic (FM) coupling between Mn on Mn sublattice (Mn-1) and Mn on Sn sublattice (Mn-2) is favorable over the antiferromagnetic (AFM) coupling for X with the number of valence electrons [N-v(X)] of 8 and 9, and vice versa for X with N-v(X) = 10 and 11, originated from the competition of the exchange interactions between X-Mn-2 and Mn-1-Mn-2. In comparison with the FM Mn-1-Mn-2 coupling, the AFM coupling decreases significantly the shear elastic constant C' but increases slightly C-44, which results in increasing elastic anisotropy (A = C-44/C') and consequently may facilitate the tetragonal shear lattice deformation. The hybridization of the minority electronic states between X d and Sn p plays a dominant role on the orientation of the magnetic coupling. The smaller change of the density of states in the Fermi level, induced by the lattice distortion for C', corresponds to the softer C' as well as the larger A in the AFM state than the FM one.

Place, publisher, year, edition, pages
2013. Vol. 88, no 1, 014109- p.
Keyword [en]
Crystal-Structure, Martensitic-Transformation, Phase-Transformation, Electronic-Structure, Sn, Transition, Metals, Field
National Category
Other Physics Topics
URN: urn:nbn:se:kth:diva-125848DOI: 10.1103/PhysRevB.88.014109ISI: 000321855900001ScopusID: 2-s2.0-84880835626OAI: diva2:641154
Swedish Research Council

QC 20130815

Available from: 2013-08-15 Created: 2013-08-15 Last updated: 2013-08-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Johansson, BörjeVitos, Levente
By organisation
Applied Material Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link