Change search
ReferencesLink to record
Permanent link

Direct link
Understanding numerically generated g-functions: A study case for a 6x6 borehole field
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration. University of Cantabria, Spain.
2013 (English)Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The Ground Source Heat Pump systems (GSHP) are an emerging technology used to exchange heat with the ground through the use of some buried heat exchangers. The thermal response of a borehole field can be characterized by its g-function. It is a non-dimensional temperature response factor, which can be calculated using either numerical or analytical solutions. Eskilson developed the first study made for the calculation of these g-functionts. Lamarche and Beauchamp proposed another analytical approach based on the Finite Line Source (FLS). Generally, both solutions present similar results with some small differences. They could be attributed to the boundary condition performed in both researches: the FLS solution considers uniform heat flux along the borehole wall in all the heat exchangers, while Eskilson’s model defines as a condition, uniform temperature at the borehole wall within all the pipes in the field.

In this Master of Science Thesis, the temperature response factors (g-functions) of a 6x6 borehole field with 36 heat exchangers (BHE) arranged in a squared configuration are obtained from new numerical models, mainly based on the use of a highly conductive material composing the BHE. For this purpose, a commercial software called Comsol Multyphisics© is employed. The aim of this thesis is to get larger knowledge in generating the g-function in relation to the boundary condition performed in the model trying to reach better approximations to the reality. Some strategies with respect to the geometry, size of the model and mesh are performed to reduce the computing time. The influence of the geothermal heat flux and the influence of the highly conductive material (HCM) composing the BHEs are also studied in our model. Going further, the thermal behavior of the ground is also studied by imposing variable heating and cooling loads during seasonal periods over a time of 25 years.

Finally, the g-functions obtained from our numerical models are compared to the one generated with the commercial software, Earth Energy Design (EED), which represents the numerical solution proposed by Eskilson, and the one generated with FLS approach. The results may explain in a closer approximation to the reality the thermal response for large borehole fields.

Place, publisher, year, edition, pages
2013. , 51 p.
EES Examensarbete / Master Thesis
Keyword [en]
borehole, heat exchangers, g-function, ground source heat pumps
National Category
Other Engineering and Technologies not elsewhere specified
URN: urn:nbn:se:kth:diva-126017OAI: diva2:641566
Subject / course
Applied Thermodynamics
Educational program
Master of Science - Industrial Engineering and Management
2013-06-19, Library, brinellvägen 68 (KTH), Stockohlm, 12:00 (English)
Available from: 2013-08-19 Created: 2013-08-18 Last updated: 2013-08-19Bibliographically approved

Open Access in DiVA

fulltext(5573 kB)659 downloads
File information
File name FULLTEXT01.pdfFile size 5573 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Applied Thermodynamics and Refrigeration
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar
Total: 659 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 169 hits
ReferencesLink to record
Permanent link

Direct link