Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
Show others and affiliations
2013 (English)In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 110, 208-216 p.Article in journal (Refereed) Published
Abstract [en]

Microfibrillated cellulose (MFC) was used in this study to prepare films containing an active molecule, lysozyme, which is a natural antimicrobial agent. The main goal of this research was to assess the potential for exploiting the nano-sized dimension of cellulose fibrils to slow the release of the antimicrobial molecule, thus avoiding a too-quick release into the surrounding medium, which is a major disadvantage of most release systems. For this purpose, the release kinetics of lysozyme over a 10-day period in two different media (pure water and water/ethanol 10. wt.%) were obtained, and the experimental data was fitted with a solution of Fick's second law to quantify the apparent diffusion coefficient (D). The results indicate that the MFC retained lysozyme, presumably due to electrostatic, hydrogen, and ion-dipole interactions, with the largest release of lysozyme-approximately 14%-occurring from the initial amount loaded on the films. As expected, ethanol as a co-solvent slightly decreased the diffusion of lysozyme from the MFC polymer network. The addition of two potential modulating release agents-glycerol and sodium chloride-was also evaluated. Findings from this work suggest that MFC-based films can be considered a suitable candidate for use in controlled-release packaging systems.

Place, publisher, year, edition, pages
2013. Vol. 110, 208-216 p.
Keyword [en]
Controlled release, Diffusion, Lysozyme, Microfibrillated cellulose, Modeling, Nano-sized
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-126039DOI: 10.1016/j.colsurfb.2013.04.046ISI: 000321940200028Scopus ID: 2-s2.0-84878939688OAI: oai:DiVA.org:kth-126039DiVA: diva2:641786
Note

QC 20130819

Available from: 2013-08-19 Created: 2013-08-19 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Nilsson, Fritjof
By organisation
Polymeric Materials
In the same journal
Colloids and Surfaces B: Biointerfaces
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf