Change search
ReferencesLink to record
Permanent link

Direct link
Thermoeconomic Optimization of Solar Thermal Power Plants with Storage in High-Penetration Renewable Electricity Markets
KTH, School of Industrial Engineering and Management (ITM), Energy Technology. (Concentrated Solar Power)
KTH, School of Industrial Engineering and Management (ITM), Energy Technology. (Concentrated Solar Power)ORCID iD: 0000-0002-3458-2112
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Concentrated Solar Power)
2013 (English)In: Energy Procedia, 2013, Vol. 57Conference paper (Refereed)
Abstract [en]

Unlike most of renewable energy technologies, solar thermal power plants with integrated thermal energy storage are able to store heat from the sun and thereby supply electricity whenever it is needed to meet the demand. This attribute makes concentrating solar power ideally suited to compensate for fluctuations in other renewable energy sources. In order to analyze this market role, three scenarios were modeled, with low, medium and high penetrations of non- dispatchable renewables (i.e. wind and solar photovoltaics). The demand that cannot be met by these variable sources is met by a solar thermal power plant with heat provided either by a solar field and storage system or a back-up gas burner. For each scenario, the size of the solar field and storage were varied in order to show the trade-off between the levelized generation costs of the system, the annual specific CO2 emissions and the share of renewable electricity generation. The results show that, regardless of the scenario, there exist optimum plant configurations with viable costs whilst simultaneously ensuring a considerable reduction in CO2 emissions. Furthermore, it is shown that the limited flexibility of the power block prevents the system from reaching higher levels of sustainability. Lastly, the results were compared with an equivalent combined cycle power plant, showing that solutions involving solar thermal power can be justified in environmental terms only if large storage units are integrated into the plants.

Place, publisher, year, edition, pages
2013. Vol. 57
, Energy Procedia, ISSN 1876-6102
Keyword [en]
Solar Thermal Power, Concentrating Solar Power, Thermal Energy Storage, Electricity Demand, Renewable Energy
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-126929DOI: 10.1016/j.egypro.2014.10.208ISI: 000348253200059ScopusID: 2-s2.0-84922279172OAI: diva2:642596
2013 ISES Solar World Congress, SWC 2013; Cancun; Mexico; 3 November 2013 through 7 November 2013

QC 20150326

Available from: 2013-08-22 Created: 2013-08-22 Last updated: 2016-08-29Bibliographically approved
In thesis
1. A Techno-Economic Framework for the Analysis of Concentrating Solar Power Plants with Storage
Open this publication in new window or tab >>A Techno-Economic Framework for the Analysis of Concentrating Solar Power Plants with Storage
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Concentrating solar power plants can integrate cost-effective thermal energy storage systems and thereby supply controllable power on demand, an advantage against other renewable technologies. Storage integration allows a solar thermal power plant to increase its load factor and to shift production to periods of peak demand. It also enables output firmness, providing stability to the power block and to the grid. Thus, despite the additional investment, storage can enhance the performance and economic viability of the plants.

However, the levelized cost of electricity of these plants yet remains higher than for other technologies, so projects today are only viable through the provision of incentives or technology-specific competitive bid tenders. It is the variability of the solar resource, the myriad roles that storage can assume, and the complexity of enhancing the synergies between the solar field, the storage and the power block, what makes the development of adequate policy instruments, design and operation of these plants a challenging process.

In this thesis a comprehensive methodology for the pre-design and analysis of concentrating solar power plants is presented. The methodology is based on a techno-economic modeling approach that allows identifying optimum trade-off curves between technical, environmental, and financial performance indicators. A number of contemporary plant layouts and novel storage and hybridization concepts are assessed to identify optimum plant configurations, in terms of component size and storage dispatch strategies.

Conclusions highlight the relevance between the sizing of key plant components, the operation strategy and the boundaries set by the location. The interrelation between critical performance indicators, and their use as decisive parameters, is also discussed. Results are used as a basis to provide recommendations aimed to support the decision making process of key actors along the project development value chain of the plants. This research work and conclusions are primarily meant to set a stepping stone in the research of concentrating solar power plant design and optimization, but also to support the research towards understanding the value of storage in concentrating solar power plants and in the grid.

Abstract [sv]

Koncentrerad solkraft erbjuder möjligheten att integrera kostnadseffektiv termisk energilagring och därmed behovsstyrd kraftkontroll. Detta är en viktig fördel jämfört med andra förnybara energiteknologier. Lagringsintegration tillåter solkraftsanläggningar att öka sin lastfaktor och skifta produktion till tider med största efterfrågan. Vidare möjliggör lagring fast elproduktion vilket leder till förbättrad nät- och kraftturbinstabilitet. Därför kan termisk lagring öka anläggningsprestanda och ekonomiskt värde trots ökande initiala kapitalkostnader.

I termer av specifik elproduktionskostnad (LCOE) ligger koncentrerade solkraftsanläggningar med lagring fortfarande högre än andra kraftteknologier och anläggningsprojekt blir endast lönsamma genom subventionsmodeller eller teknologispecifika konkurrensutsatta anbudsförfaranden. Att hitta adekvata policylösningar och optimala design och operationsstrategier är en utmanande process eftersom det gäller att hitta rätt balans mellan variabel solinstrålning, lagring av energi och tid för produktion genom optimal design och operation av solmottagarfält, kraftblock och lagringskapacitet.

I denna avhandling presenteras en omfattande metodik för pre-design och analys av koncentrerande solkraftverk. Metodiken baseras på en tekno-ekonomisk modelleringsansats som möjliggör identifiering av optimala avvägningssamband för tekniska, ekonomiska och miljöprestanda indikatorer. Metodiken tillämpas på ett antal moderna anläggningslayouter  och lagrings- och hybridiseringskoncept för att identifiera optimal kraftanläggningsdesign i termer av komponentprestanda och lagringsanvändningsstrategier. I slutsatsen poängteras relevansen av att hitta rätt storlek på nyckelkomponenter i relation till lagringsstrategi och randvillkoren som ges av konstruktionsläget för optimal ekonomisk och miljömässig prestanda. Resultaten används för att formulera rekommendationer till nyckelaktörer i beslutsprocessen genom hela kraftanläggningens värdekedja från politisk beslutsfattare till anläggningsingenjör. Forskningen och slutsatserna i detta arbete skall i första hand ta ett steg framåt för optimering och design av solkraftsanläggningar men även tillhandahålla en metodik för utvärdering av lagringslösningar och dess specifika värde för solkraftsanläggningar och elnätet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 239 p.
TRITA-KRV, ISSN 1100-7990 ; 2016:01
Concentrating solar power, thermal energy storage, techno-economic analysis, Termisk solkraft, termisk energilagring, techno-eknomiska analys
National Category
Energy Engineering
Research subject
Energy Technology
urn:nbn:se:kth:diva-191339 (URN)978-91-7729-086-5 (ISBN)
External cooperation:
Public defence
2016-09-23, M2, Brinellvägen 64, Stockholm, 10:00 (English)

QC 20160829

Available from: 2016-08-29 Created: 2016-08-29 Last updated: 2016-08-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusPublication at Mendeley

Search in DiVA

By author/editor
Guédez, RafaelSpelling, JamesLaumert, Björn
By organisation
Energy TechnologyHeat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 148 hits
ReferencesLink to record
Permanent link

Direct link