Change search
ReferencesLink to record
Permanent link

Direct link
Reduction of Aerodynamic Forcing inTransonic Turbomachinery: Numerical Studies on Forcing Reduction Techniques
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2013 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

Due to more and more aggressive designs in turbomachinery, assuring the structural integrity of its components has become challenging. Also influenced by this trend is blade design, where lighter and slimmer blades, in combination with higher loading, lead to an increased risk of failure, e.g. in the form of blade vibration. Methods have been proposed to reduce vibration amplitudes for subsonic engines, but cannot directly be applied to transonic regimes due to the additional physical phenomena involved. Therefore the present work investigates numerically the influence of two methods for reducing blade vibration amplitudes in transonic turbomachines, namely varying the blade count ratio and clocking. As it is known that clocking affects the efficiency, the concurrent effects on vibration amplitudes and efficiency are analyzed and discussed in detail.

For the computational investigations, the proprietary Fortran-based non-linear, viscous 3D-CFD solver VolSol is applied on two transonic compressor cases and one transonic turbine case. In order to reduce calculation time and to generate the different blade count ratios a scaling technique is applied.

The first and main part of this work focuses on the influence of the reduction techniques on aerodynamic forcing. Both the change in blade count ratio and clocking position are found to have significant potential for reducing aerodynamic force amplitudes. Manipulation of the phasing of excitation sources is found herein to be a major contributor to the amplitude variation. The lowest stimulus results are achieved for de-phased excitation sources and results in multiple blade force peaks per blade passing. In the case of blade count ratio variation it was found that blockage for high blade count ratios and the change in potential field size have significant impacts on the blade forcing. For the clocking investigation, three additional operating points and blade count ratios are analyzed and prove to have an impact on the force reduction achievable by clocking.

The second part of the work evaluates the influence of clocking on the efficiency of a transonic compressor. It is found that the efficiency can be increased, but the magnitude of the change and the optimal wake impingement location depend on the operating point. Moreover it is shown that optimal efficiency and aerodynamic forcing settings are not directly related. In order to approximate the range of changes of both parameters, an ellipse approximation is suggested.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. , xxv, 158 p.
Trita-KRV, ISSN 1100-7990 ; 13:08
Keyword [en]
Forced Response, Aerodynamic Forcing, Efficiency, Blade Count Ratio, Clocking
National Category
Mechanical Engineering Energy Engineering Aerospace Engineering
URN: urn:nbn:se:kth:diva-127967ISBN: 978-91-7501-870-6OAI: diva2:646954
Public defence
2013-10-01, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)

QC 20130911

Available from: 2013-09-11 Created: 2013-09-10 Last updated: 2013-11-27Bibliographically approved

Open Access in DiVA

PhD_Thesis_Fruth_2013(11641 kB)770 downloads
File information
File name FULLTEXT02.pdfFile size 11641 kBChecksum SHA-512
Type fulltextMimetype application/pdf
Errata(147 kB)23 downloads
File information
File name ERRATA01.pdfFile size 147 kBChecksum SHA-512
Type errataMimetype application/pdf

Search in DiVA

By author/editor
Fruth, Florian
By organisation
Heat and Power Technology
Mechanical EngineeringEnergy EngineeringAerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 770 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 409 hits
ReferencesLink to record
Permanent link

Direct link