Change search
ReferencesLink to record
Permanent link

Direct link
Shear wave elastography for characterization of carotid artery plaques-A feasibility study in an experimental setup
KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.ORCID iD: 0000-0002-2487-7400
KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.ORCID iD: 0000-0002-9654-447X
KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.ORCID iD: 0000-0002-5795-9867
KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.
Show others and affiliations
2012 (English)In: 2012 IEEE International Ultrasonics Symposium (IUS), IEEE , 2012, 6562400- p.Conference paper (Refereed)
Abstract [en]

Characterization of vulnerable plaques in the carotid artery is critical for the prevention of ischemic stroke. However, ultrasound-based methods for plaque characterization used in the clinics today are limited to visual assessment and evaluation of plaque echogenicity. Shear Wave Elastography (SWE) is a new tissue characterization technique based on radiation force-induced shear wave propagation with potential use in plaque vulnerability assessment. The purpose of this study was to develop an experimental setup to test the feasibility of SWE for carotid plaque characterization. A carotid artery phantom with a soft inclusion in the wall, mimicking a vulnerable plaque, was constructed (10% polyvinyl alcohol (PVA), 3% graphite) by exposing the vessel and plaque to three and one freeze-thaw cycles (6h freeze, 6h thaw) respectively. An Aixplorer SWE system (Supersonic Imagine) was used to measure the shear wave speed (cT) in the vessel wall and plaque. The Young's modulus (E) was then calculated via the Moens-Korteweg (M-K) equation. For comparison, eight cylinders (d = 4 cm, h = 4 cm) were constructed for mechanical testing from the same PVA batch, of which four were exposed to three freeze-thaw cycles (mimicking the vessel wall) and four to one freeze-thaw cycle (mimicking the plaque). The Young's moduli for the cylinders were obtained via a displacement controlled mechanical compression test (Instron 5567) by applying 5% strain. The mean shear wave speed was 2.6 (±0.7) m/s in the vessel wall, 1.8 (±0.7) m/s in the plaque, resulting in Evessel = 11.5 (±0.5) kPa, Eplaque = 4.3 (±0.5) kPa. The compression tests resulted in E = 64.2 (±11.1) kPa in the hard cylinder and E = 9.7 (±3.1) kPa in the soft cylinder. The results showed that it was possible to distinguish between the arterial wall and the plaque. The disagreement between mechanical testing and SWE can be explained by the fact that the shear wave does not propagate monochromatically in cylindrical geometry. To achieve a better calculation of the elastic modulus, the frequency dependency of the shear wave velocity must be considered.

Place, publisher, year, edition, pages
IEEE , 2012. 6562400- p.
, IEEE International Ultrasonics Symposium, IUS, ISSN 1948-5719
Keyword [en]
carotid artery, experimental setup, phantom, plaque, shear wave elastography, Young's modulus
National Category
Medical and Health Sciences
URN: urn:nbn:se:kth:diva-127976DOI: 10.1109/ULTSYM.2012.0343ISI: 000326960202154ScopusID: 2-s2.0-84882313081ISBN: 978-146734561-3OAI: diva2:647012
2012 IEEE International Ultrasonics Symposium, IUS 2012, 7 October 2012 through 10 October 2012, Dresden

QC 20130910

Available from: 2013-09-10 Created: 2013-09-10 Last updated: 2013-12-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Widman, ErikMaksuti, EliraLarsson, MatildaBjällmark, Anna
By organisation
Medical Imaging
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 37 hits
ReferencesLink to record
Permanent link

Direct link