Change search
ReferencesLink to record
Permanent link

Direct link
Concept and application of distributed compressed air energy storage systems integrated in utility networks
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-9923-4189
2013 (English)In: Proceedings of the ASME 2013 Power Conference, American Society of Mechanical Engineers , 2013Conference paper (Refereed)
Abstract [en]

Distributed energy storage has been recognized as a valuable and often indispensable complement to small-scale power generation based on renewable energy sources. Small-scale energy storage positioned at the demand side would open the possibility for enhanced predictability of power output and easier integration of small-scale intermittent generators into functioning electricity markets, as well as offering inherent peak shaving abilities for mitigating contingencies and blackouts, for reducing transmission losses in local networks, profit optimization and generally allowing tighter utility control on renewable energy generation. Distributed energy storage at affordable costs and of low environmental footprint is a necessary prerequisite for the wider deployment of renewable energy and its deeper penetration into local networks.

Thermodynamic energy storage in the form of compressed air is an alternative to electrochemical energy storage in batteries and has been evaluated in various studies and tested commercially on a large scale.

Distributed compressed air energy storage (DCAES) systems in combination with renewable energy generators installed at residential homes, public or commercial buildings are a viable alternative to large-scale energy storage, moreover promising lower specific investment than batteries if a mass-market is established. Flexible control methods can be applied to DCAES units, resulting in a complex system running either independently for home power supply, or as a unified and centrally controlled utility-scale energy storage entity.

This study aims at conceptualizing the plausible distributed compressed-air energy storage units, examining the feasibility for their practical implementation and analyzing their behavior, as well as devising the possible control strategies for optimal utilization of grid-integrated renewable energy sources at small scales. Results show that overall energy storage efficiency of around 70% can be achieved with comparatively simple solutions, offering less technical challenges and lower specific costs than comparable electrical battery systems. Furthermore, smart load management for improving the dispatchability can bring additional benefits by profit optimization and decrease the payback time substantially.

Place, publisher, year, edition, pages
American Society of Mechanical Engineers , 2013.
Keyword [en]
energy storage, compressed air, small-scale, distributed, control strategy, grid integration
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-128445DOI: 10.1115/POWER2013-98113ISI: 000349875400021ScopusID: 2-s2.0-84896293881OAI: diva2:647560
ASME 2013 Power Conference - POWER2013, Boston, Massachusetts, USA, July 29 - August 1, 2013

QC 20130924

Available from: 2013-09-11 Created: 2013-09-11 Last updated: 2015-03-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Petrov, Miroslav
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 56 hits
ReferencesLink to record
Permanent link

Direct link