Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optical absorption cross section and quantum efficiency of a single silicon quantum dot
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.ORCID iD: 0000-0003-3833-9969
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.ORCID iD: 0000-0003-2562-0540
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.ORCID iD: 0000-0002-5260-5322
2013 (English)In: Nanotechnology VI, SPIE - International Society for Optical Engineering, 2013, p. 876607-Conference paper, Published paper (Refereed)
Abstract [en]

Direct measurements of the optical absorption cross section (sigma) and exciton lifetime are performed on a single silicon quantum dot fabricated by electron beam lithography (EBL), reactive ion etching (RIE) and oxidation. For this aim, single photon counting using, an avalanche photodiode detector (APD) is applied to record photoluminescence (PL) intensity traces under pulsed excitation. The PL decay is found to be of a mono-exponential character with a lifetime of 6.5 mu s. By recording the photoluminescence rise time at different photon fluxes the absorption cross could be extracted yielding a value of 1.46x10(-14)cm(2) under 405 nm excitation wavelength. The PL quantum efficiency is found to be about 9% for the specified single silicon quantum dot.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2013. p. 876607-
Series
Proceedings of SPIE, ISSN 0277-786X ; 8766
Keyword [en]
Single silicon quantum dot, absorption cross section, quantum efficiency (QE), photoluminescence (PL) decay, luminescence rise time, silicon nanocrystals
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-128505DOI: 10.1117/12.2017483ISI: 000323346100002Scopus ID: 2-s2.0-84881188084ISBN: 978-0-8194-9563-1 (print)OAI: oai:DiVA.org:kth-128505DiVA, id: diva2:647953
Conference
Conference on Nanotechnology VI, APR 24-25, 2013, Grenoble, France
Note

QC 20130913

Available from: 2013-09-13 Created: 2013-09-12 Last updated: 2015-10-01Bibliographically approved
In thesis
1. Carrier Dynamics in Single Luminescent Silicon Quantum Dots
Open this publication in new window or tab >>Carrier Dynamics in Single Luminescent Silicon Quantum Dots
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Bulk silicon as an indirect bandgap semiconductor is a poor light emitter. In contrast, silicon nanocrystals (Si NCs) exhibit strong emission even at room temperature, discovered initially at 1990 for porous silicon by Leigh Canham. This can be explained by the indirect to quasi-direct bandgap modification of nano-sized silicon according to the already well-established model of quantum confinement.

In the absence of deep understanding of numerous fundamental optical properties of Si NCs, it is essential to study their photoluminescence (PL) characteristics at the single-dot level. This thesis presents new experimental results on various photoluminescence mechanisms in single silicon quantum dots (Si QDs).

The visible and near infrared emission of Si NCs are believed to originate from the band-to-band recombination of quantum confined excitons. However, the mechanism of such process is not well understood yet. Through time-resolved PL decay spectroscopy of well-separated single Si QDs, we first quantitatively established that the PL decay character varies from dot-to-dot and the individual lifetime dispersion results in the stretched exponential decays of ensembles. We then explained the possible origin of such variations by studying radiative and non-radiative decay channels in single Si QDs. For this aim the temperature dependence of the PL decay were studied. We further demonstrated a model based on resonance tunneling of the excited carriers to adjacent trap sites in single Si QDs which explains the well-known thermal quenching effect.

Despite the long PL lifetime of Si NCs, which limits them for optoelectronics applications, they are ideal candidates for biomedical imaging, diagnostic purposes, and phosphorescence applications, due to the non-toxicity, biocompability and material abundance of silicon. Therefore, measuring quantum efficiency of Si NCs is of great importance, while a consistency in the reported values is still missing. By direct measurements of the optical absorption cross-section for single Si QDs, we estimated a more precise value of internal quantum efficiency (IQE) for single dots in the current study. Moreover, we verified IQE of ligand-passivated Si NCs to be close to 100%, due to the results obtained from spectrally-resolved PL decay studies. Thus, ligand-passivated silicon nanocrystals appear to differ substantially from oxide-encapsulated particles, where any value from 0 % to 100 % could be measured. Therefore, further investigation on passivation parameters is strongly suggested to optimize the efficiency of silicon nanocrystals systems.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. p. xviii, 73
Series
Trita-ICT ; 2015:09
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-174149 (URN)978-91-7595-665-7 (ISBN)
Public defence
2015-10-23, SAL C, Electrum 229, KTH-ICT, Electrum 229, KTH-ICT, Kistagången 16, Kista, 10:00 (English)
Opponent
Supervisors
Note

QC 201501001

Available from: 2015-10-01 Created: 2015-10-01 Last updated: 2015-10-01Bibliographically approved

Open Access in DiVA

fulltext(1187 kB)116 downloads
File information
File name FULLTEXT01.pdfFile size 1187 kBChecksum SHA-512
ebb48eacef36d005f1be020e3b15e3f992988c707c17ea3a5502260ee5b93ce38bfb05edbe5818a9973aa96bb52e9f5f3790b6cbf597eb2e9b69d02766b34263
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusSpie Digital Library

Authority records BETA

Sangghaleh, FatemehSychugov, IlyaLinnros, Jan

Search in DiVA

By author/editor
Sangghaleh, FatemehBruhn, BenjaminSychugov, IlyaLinnros, Jan
By organisation
Material Physics, MF
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 116 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf