Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aerodynamic Implication of Endwall and Profile Film Cooling in a Transonic Annular Cascade
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0001-5162-2289
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0002-1033-9601
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
(Siemens Industrial Turbomachinery AB, Finspång, Sweden)
2013 (English)In: 21st ISABE Conference / [ed] ISABE, Busan, Korea, 2013Conference paper, Published paper (Refereed)
Abstract [en]

An experimental study is performed to observe the aerodynamic implications of endwall and profile film cooling on flow structures and aerodynamic losses. The investigated vane is a geometrically similar transonic nozzle guide vane with engine-representative cooling geometry. Furthermore, a new formulation of the cooling aerodynamic loss equation is presented and compared with the conventional methods. Results from a 5-hole pneumatic probe show that the film coolant significantly alters the secondary flow structure. The effect of different assumptions for the loss calculation is shown to significantly change the measured loss.

Place, publisher, year, edition, pages
Busan, Korea, 2013.
Series
ISABE-2013, ISABE-2013-1155
National Category
Engineering and Technology Mechanical Engineering Aerospace Engineering Energy Engineering Applied Mechanics
Research subject
SRA - Energy
Identifiers
URN: urn:nbn:se:kth:diva-128934OAI: oai:DiVA.org:kth-128934DiVA: diva2:648863
Conference
21st International Symposium on Air Breathing Engines (ISABE-2103), September 9-13, Busan, Korea
Projects
Sector Rig
Note

QC 20140409

Available from: 2013-09-17 Created: 2013-09-17 Last updated: 2014-09-09Bibliographically approved
In thesis
1. Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane
Open this publication in new window or tab >>Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Efficiency improvement in turbomachines is an important aspect in reducing the use of fossil-based fuel and thereby reducing carbon dioxide emissions in order to achieve a sustainable future. Gas turbines are mainly fossil-based turbomachines powering aviation and land-based power plants. In line with the present situation and the vision for the future, gas turbine engines will retain their central importance in coming decades. Though the world has made significant advancements in gas turbine technology development over past few decades, there are yet many design features remaining unexplored or worth further improvement. These features might have a great potential to increase efficiency. The high pressure turbine (HPT) stage is one of the most important elements of the engine where the increased efficiency has a significant influence on the overall efficiency as downstream losses are substantially affected by the prehistory. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage.

 

Hence, this study has been incorporated into a research project that investigates leading edge contouring near endwall by fillet and external cooling on a nozzle guide vane with a common goal to contribute to the development of the HPT stage. In the search for HPT stage efficiency gains, leading edge contouring near the endwall is one of the methods found in the published literature that showed a potential to increase the efficiency by decreasing the amount of secondary losses. However, more attention is necessary regarding the realistic use of the leading edge fillet. On the other hand, external cooling has a significant influence on the HPT stage efficiency and more attention is needed regarding the aerodynamic implication of the external cooling. Therefore, the aerodynamic influence of a leading edge fillet and external cooling, here film cooling at profile and endwall as well as TE cooling, on losses and flow field have been investigated in the present work. The keystone of this research project has been an experimental investigation of a modern nozzle guide vane using a transonic annular sector cascade. Detailed investigations of the annular sector cascade have been presented using a geometric replica of a three dimensional gas turbine nozzle guide vane. Results from this investigation have led to a number of new important findings and also confirmed some conclusions established in previous investigations to enhance the understanding of complex turbine flows and associated losses.

 

The experimental investigations of the leading edge contouring by fillet indicate a unique outcome which is that the leading edge fillet has no significant effect on the flow and secondary losses of the investigated nozzle guide vane. The reason why the leading edge fillet does not affect the losses is due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. The investigation of the external cooling indicates that a coolant discharge leads to an increase of profile losses compared to the uncooled case. Discharges on the profile suction side and through the trailing edge slot are most prone to the increase in profile losses. Results also reveal that individual film cooling rows have a weak mutual effect. A superposition principle of these influences is followed in the midspan region. An important finding is that the discharge through the trailing edge leads to an increase in the exit flow angle in line with an increase of losses and a mixture mass flow. Results also indicate that secondary losses can be reduced by the influence of the coolant discharge. In general, the exit flow angle increases considerably in the secondary flow zone compared to the midspan zone in all cases. Regarding the cooling influence, the distinct change in exit flow angle in the area of secondary flows is not noticeable at any cooling configuration compared to the uncooled case. This interesting zone requires an additional, accurate study. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the suction surfaces and does not reach the pressure side of the hub surface, leaving it less protected from the hot gas. This indicates a strong interaction of the secondary flow and cooling showing that the influence of the secondary flow cannot be easily influenced.

 

The overall outcome enhances the understanding of complex turbine flows, loss behaviour of cooled blade, secondary flow and interaction of cooling and secondary flow and provides recommendations to the turbine designers regarding the leading edge contouring and external cooling. Additionally, this study has provided to a number of new significant results and a vast amount of data, especially on profile and secondary losses and exit flow angles, which are believed to be helpful for the gas turbine community and for the validation of analytical and numerical calculations.

Abstract [sv]

Ökad verkningsgrad i turbomaskiner är en viktig del i strävan att minska användningen av fossila bränslen och därmed minska växthuseffekten för att uppnå en hållbar framtid. Gasturbinen är huvudsakligen fossilbränslebaserad, och driver luftfart samt landbaserad kraftproduktion. Enligt rådande läge och framtidsutsikter bibehåller gasturbinen denna centrala roll under kommande decennier. Trots betydande framsteg inom gasturbinteknik under de senaste årtionden finns fortfarande många designaspekter kvar att utforska och vidareutveckla. Dessa designaspekter kan ha stor potential till ökad verkningsgrad. Högtrycksturbinsteget är en av de viktigaste delarna av gasturbinen, där verkningsgraden har betydande inverkan på den totala verkningsgraden eftersom förluster kraftigt påverkas av tidigare förlopp. Huvudsyftet med denna studie är att bidra till verkningsgradsförbättringar i högtrycksturbinsteget.

 

Studien är del i ett forskningsprojekt som undersöker ledskenans framkantskontur vid ändväggarna samt extern kylning, i jakten på dessa förbättringar. Den aerodynamiska inverkan av en förändrad geometri vid ledskenans ändväggar har i tidigare studier visat potential för ökad verkningsgrad genom minskade sekundärförluster. Ytterligare fokus krävs dock, med användning av en rimlig hålkälsradie. Samtidigt har extern kylning i form av filmkylning stor inverkan på verkningsgraden hos högtrycksturbinsteget och forskning behövs med fokus på den aerodynamiska inverkan. Av denna anledning studeras här inverkan både av ändrad hålkälsradie vid ledskenans framkant samt extern kylning i form av filmkylning av skovel, ändvägg och bakkant på aerodynamiska förluster och strömningsfält. Huvudpelaren i detta forskningsprojekt har varit en experimentell undersökning av en geometrisk replika av en modern tredimensionell gasturbinstator i en transonisk annulärkaskad. Detaljerade undersökningar i annulärkaskaden har gett betydande resultat, och bekräftat vissa tidigare studier. Detta har lett till ökad förståelsen för de komplexa flöden och förluster som karakteriserar gasturbiner.

 

De experimentella undersökningarna av förändrad framkantsgeometri leder till den unika slutsatsen att den modifierade hålkälsradien inte har någon betydande inverkan på strömningsfältet eller sekundärförluster av den undersökta ledskenan. Anledningen till att förändringen inte påverkar förlusterna är i detta fall den tredimensionella karaktären hos ledskenan med en redan existerande typisk framkantsgeometri. Undersökningarna visar också att de komplexa sekundärströmningarna är kraftigt beroende av det inkommande gränsskiktet. Undersökning av extern kylning visar att kylflödet leder till en ökad profilförlust. Kylflöde på sugsidan samt bakkanten har störst inverkan på profilförlusten. Resultaten visar också att individuella filmkylningsrader har liten påverkan sinsemellan och kan behandlas genom en superpositionsprincip längs mittsnittet. En viktig slutsats är att kylflöde vid bakkanten leder till ökad utloppsvinkel tillsammans med ökade förluster och massflöde. Resultat tuder på att sekundärströmning kan minskas genom ökad kylning. Generellt ökar utloppsvinkeln markant i den sekundära flödeszonen jämfört med mittsnittet för alla undersökta fall. Den kraftiga förändringen i utloppsvinkel är dock inte märkbar i den sekundära flödeszonen i något av kylfallen jämfört med de okylda referensfallet. Denna zon fordrar ytterligare studier. Spårgasundersökning av ledskenan med koldioxid (CO2) visar att plattformskylning uppströms ledskenan koncentreras till skovelns sugsida, och når inte trycksidan som därmed lämnas mer utsatt för het gas. Detta påvisar den kraftiga interaktionen mellan sekundärströmning och kylflöden, och att inverkan från sekundärströmningen ej enkelt kan påverkas.

De generella resultaten från undersökningen ökar förståelsen av komplexa turbinflöden, förlustbeteenden för kylda ledskenor, interaktionen mellan sekundärströmning och kylflöden, och ger rekommendationer för turbinkonstruktörer kring förändrad framkantsgeometri i kombination med extern kylning. Dessutom har studien gett betydande resultat och en stor mängd data, särskilt rörande profil- och sekundärförluster och utloppsvinkel, vilket tros kunna vara till stor hjälp för gasturbinssamfundet vid validering av analytiska och numeriska beräkningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. 125 p.
Series
TRITA-KRV, ISSN 1100-7990 ; 14:04
Keyword
gas turbine, aerodynamics, secondary flow, external cooling, trailing edge cooling, film cooling, aerodynamic loss, high pressure turbine, nozzle guide vane
National Category
Aerospace Engineering Applied Mechanics Energy Engineering
Research subject
Aerospace Engineering; Energy Technology
Identifiers
urn:nbn:se:kth:diva-150458 (URN)978-91-7595-240-6 (ISBN)
Public defence
2014-10-01, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
Turbopower, Sector rig
Note

QC 20140909

Available from: 2014-09-09 Created: 2014-09-04 Last updated: 2014-10-13Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Saha, RanjanFridh, Jens

Search in DiVA

By author/editor
Saha, RanjanFridh, JensFransson, Torsten
By organisation
Heat and Power Technology
Engineering and TechnologyMechanical EngineeringAerospace EngineeringEnergy EngineeringApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 76 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf