Change search
ReferencesLink to record
Permanent link

Direct link
Spatial organization of proteins in metastasizing cells
KTH, School of Engineering Sciences (SCI), Applied Physics, Experimental Biomolecular Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Experimental Biomolecular Physics.ORCID iD: 0000-0002-5584-9170
Show others and affiliations
2013 (English)In: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 83, no 9, 855-865 p.Article in journal (Refereed) Published
Abstract [en]

The ability of tumor cells to invade into the surrounding tissue is linked to defective adhesive and mechanical properties of the cells, which are regulated by cell surface adhesions and the intracellular filamentous cytoskeleton, respectively. With the aim to further reveal the underlying mechanisms and provide new strategies for early cancer diagnostics, we have used ultrahigh resolution stimulated emission depletion (STED) microscopy as a means to identify metastasizing cells, based on their subcellular protein distribution patterns reflecting their specific adhesive and mechanical properties. We have compared the spatial distribution of cell-matrix adhesion sites and the vimentin filamentous systems in a matched pair of primary, normal, and metastatic human fibroblast cells. We found that the metastatic cells showed significantly increased densities and more homogenous distributions of nanoscale adhesion-related particles. Moreover, they showed an increase in the number but reduced sizes of the areas of cell-matrix adhesion complexes. The organization of the vimentin intermediate filaments was also found to be significantly different in the metastasizing cells, showing an increased entanglement and loss of directionality. Image analysis procedures were established, allowing an objective detection and characterization of these features and distinction of metastatic cells from their normal counterparts. In conclusion, our results suggest that STED microscopy provides a novel tool to identify metastasizing cells from a very sparse number of cells, based on the altered spatial distribution of the cell-matrix adhesions and intermediate filaments.

Place, publisher, year, edition, pages
John Wiley & Sons, 2013. Vol. 83, no 9, 855-865 p.
Keyword [en]
STED microscopy, cell adhesion, metastasis, cancer, diagnostics, vimentin, image analysis
National Category
Cell Biology Biophysics
Research subject
Biological Physics
URN: urn:nbn:se:kth:diva-129103DOI: 10.1002/cyto.a.22304ISI: 000323480200011ScopusID: 2-s2.0-84883054518OAI: diva2:650299
Swedish Cancer Society, CAN 2011/654Swedish Research Council, VR-NT 2012-3045

QC 20130920

Available from: 2013-09-20 Created: 2013-09-19 Last updated: 2016-03-10Bibliographically approved
In thesis
1. Super resolution optical imaging – image analysis, multicolor development and biological applications
Open this publication in new window or tab >>Super resolution optical imaging – image analysis, multicolor development and biological applications
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on super resolution STED optical imaging. STED provides a wealth of new informational content to the acquired images by using stimulated emission to surpass the diffraction limit in optical fluorescence microscopy. To further increase the informational content, a new method to perform multicolor STED imaging by exploiting differences in the photostability and excitation spectra of dyes is presented. In order to extract information from the images, computational algorithms which handle the new type of high resolution informational content are developed.

We propose that multicolor super resolution imaging in combination with image analysis can reduce the amount of clinical samples required to perform accurate cancer diagnosis. To date, such diagnosis is based mainly on significant amounts of tissue samples extracted from the suspected tumor site. The sample extraction often requires anesthetics and can lead to complications such as hematoma, infections and even cancer cell ceding along the needle track. We show that by applying multicolor STED and image analysis, the information gained from single cells is greatly increased. We therefore propose that accurate diagnosis can be based on significantly less extracted tissue material, allowing for a more patient friendly sampling. This approach can also be applied when studying blood platelets, where we show how the high informational content can be used to identify platelet specific activational states. Since platelets are involved in many different types of diseases, such analysis could provide means of performing truly minimally invasive diagnostics based on a simple blood test.

In addition, our data makes it possible to understand in finer detail the underlying mechanisms rendering cells metastasis competent. We combine the high resolution spatial information provided by STED with information regarding the adhesive forces of cells measured by TFM (Traction Force Microscopy) and the cell stiffness measured by AFM (Atomic Force Microscopy). Such comparisons provide a link between the specific highly resolved protein distributions and different cellular mechanics and functions.

This thesis also includes STED imaging and analysis on the spatial organization of neuronal synaptic regulating proteins, implicating the speed with which neuronal signaling can be regulated.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. x, 86 p.
TRITA-FYS, ISSN 0280-316X ; 2014:04
Stimulated emission depletion (STED) microscopy, nanoscopy, multicolor, image analysis, diagnostics, cancer, metastasis
National Category
Physical Sciences
Research subject
Biological Physics
urn:nbn:se:kth:diva-141011 (URN)978-91-7595-001-3 (ISBN)
Public defence
2014-02-28, FB42, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 10:51 (English)

QC 20140207

Available from: 2014-02-07 Created: 2014-02-05 Last updated: 2014-02-07Bibliographically approved

Open Access in DiVA

Rönnlund et al Cytometry part A 2013(6262 kB)9 downloads
File information
File name FULLTEXT01.pdfFile size 6262 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rönnlund, DanielBlom, HansWidengren, Jerker
By organisation
Experimental Biomolecular Physics
In the same journal
Cytometry Part A
Cell BiologyBiophysics

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 58 hits
ReferencesLink to record
Permanent link

Direct link