Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Realistic Domain Structure of As-Synthesized Graphene Oxide from Ultrafast Spectroscopy
Show others and affiliations
2013 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, no 33, 12468-12474 p.Article in journal (Refereed) Published
Abstract [en]

Graphene oxide (GO) is an attractive alternative for large-scale production of graphene, but its general structure is still under debate due to its complicated nonstoichiometric nature. Here we perform a set of femto-second pump-probe experiments on as-synthesized GO to extrapolate structural information in situ. Remarkably, it is observed that, in these highly oxidized GO samples, the ultrafast graphene-like dynamics intrinsic to pristine graphene is completely dominant over a wide energy region and can be modified by the localized impurity states and the electron-phonon coupling under certain conditions. These observations, combined with the X-ray photoelectron spectroscopy analysis and control experiments, lead to an important conclusion that GO consists of two types of domain, namely the carbon-rich graphene-like domain and the oxygen-rich domain. This study creates a new understanding of the realistic domain structure and properties of as-synthesized GO, offering useful guidance for future applications based on chemically modified/functionalized graphenes.

Place, publisher, year, edition, pages
2013. Vol. 135, no 33, 12468-12474 p.
Keyword [en]
Analysis and controls, Chemically modified, Electron phonon couplings, Future applications, Large-scale production, Pump-probe experiments, Structural information, Ultra-fast spectroscopies
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-129118DOI: 10.1021/ja407110rISI: 000323536100048Scopus ID: 2-s2.0-84883071800OAI: oai:DiVA.org:kth-129118DiVA: diva2:652211
Note

QC 20130930

Available from: 2013-09-30 Created: 2013-09-19 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Duan, SaiLuo, Yi

Search in DiVA

By author/editor
Duan, SaiLuo, Yi
By organisation
Theoretical Chemistry and Biology
In the same journal
Journal of the American Chemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf