Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Grasp Moduli Spaces
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0003-1114-6040
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0003-4132-1217
KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0003-2965-2953
2013 (English)In: Proceedings of Robotics: Science and Systems (RSS 2013), 2013Conference paper, Published paper (Refereed)
Abstract [en]

We present a new approach for modelling grasping using an integrated space of grasps and shapes. In particular, we introduce an infinite dimensional space, the Grasp Moduli Space, which represents shapes and grasps in a continuous manner. We define a metric on this space allowing us to formalize ‘nearby’ grasp/shape configurations and we discuss continuous deformations of such configurations. We work in particular with surfaces with cylindrical coordinates and analyse the stability of a popular L1 grasp quality measure Ql under continuous deformations of shapes and grasps. We experimentally determine bounds on the maximal change of Ql in a small neighbourhood around stable grasps with grasp quality above a threshold. In the case of surfaces of revolution, we determine stable grasps which correspond to grasps used by humans and develop an efficient algorithm for generating those grasps in the case of three contact points. We show that sufficiently stable grasps stay stable under small deformations. For larger deformations, we develop a gradient-based method that can transfer stable grasps between different surfaces. Additionally, we show in experiments that our gradient method can be used to find stable grasps on arbitrary surfaces with cylindrical coordinates by deforming such surfaces towards a corresponding ‘canonical’ surface of revolution.

Place, publisher, year, edition, pages
2013.
Keyword [en]
Grasping, Manipulation
National Category
Computer Science Robotics
Identifiers
URN: urn:nbn:se:kth:diva-129486OAI: oai:DiVA.org:kth-129486DiVA: diva2:652498
Conference
Robotics Science and Systems (RSS 2013)
Funder
EU, FP7, Seventh Framework Programme, FP7-ERC- 279933EU, FP7, Seventh Framework Programme, IST-FP7-270436Swedish Foundation for Strategic Research
Note

QC 20140205

Available from: 2013-09-30 Created: 2013-09-30 Last updated: 2014-02-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Robotics Science and Systems (RSS 2013)

Authority records BETA

Pokorny, Florian T.Kragic, Danica

Search in DiVA

By author/editor
Pokorny, Florian T.Hang, KaiyuKragic, Danica
By organisation
Computer Vision and Active Perception, CVAPCentre for Autonomous Systems, CAS
Computer ScienceRobotics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf