Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers Based on PCL and Quaternized PDMAEMA
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.ORCID iD: 0000-0002-5444-7276
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.ORCID iD: 0000-0002-8194-0058
Show others and affiliations
2013 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

In this study, the aim was to prepare and evaluate a block copolymer that can be used as a compatabilizer in cellulose fiber-reinforced biocomposites. It as an amphiphilic block copolymer consisting of poly(ε-caprolactone) (PCL), made with  ring-opening polymerization (ROP), and a shorter segment of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) that was synthesized with atom transfer radical polymerization (ATRP). The PDMAEMA-part was made in one single length, while the PCL-part was varied in three different lengths; in total were three block copolymers prepared. In the last step of the synthesis, the PDMAEMA-part was quaternized that turns it into a cationically charged chain – a polyelectrolyte. The block copolymers were then able to form cationic micelles in water, from where they can adsorb, under mild conditions, to anionic surfaces such as silicon oxide and cellulose-model surfaces. This provides the surface with a more hydrophobic character shown with contact angle measurements. Finally, with atomic force microscopy (AFM) force measurements, it was demonstrated that there is a clear entanglement behavior obtained between the block copolymers and a PCL surface at about 60 °C, which is of importance for the information regarding the adhesive interface in a future biocomposite.

Place, publisher, year, edition, pages
2013.
National Category
Polymer Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-129716OAI: oai:DiVA.org:kth-129716DiVA: diva2:653284
Conference
2013 TAPPI International Conference on Nanotechnology for Renewable Materials; Stockholm, Sweden, 24-27 June, 2013
Note

QC 20140327

Available from: 2013-10-03 Created: 2013-10-03 Last updated: 2016-11-25Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Bruce, CarlUtsel, SimonPettersson, TorbjörnCarlmark, AnnaFogelström, LindaWågberg, LarsMalmström, Eva
By organisation
Coating TechnologyVinnExcellence Center BiMaC InnovationFibre TechnologyWallenberg Wood Science Center
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 88 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf