Change search
ReferencesLink to record
Permanent link

Direct link
Stokes Flow Moving Boundary Problems.
KTH, School of Computer Science and Communication (CSC).
2011 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The present work aims to simulate the dynamics of bodies immersed in viscous fluid by seeking numerical solutions for appropriate field variables. First we investigate the forces on bodies close to a plane stationary wall. For horizontal and vertical circular cylinders and a sphere, the forces are computed from the velocity and pressure fields of the Stokes equation by the COMSOL Multiphysics finite element software. The forces and pressure fields are then compared with analytical results from Reynolds Lubrication theory.

In addition to the above, an object swimming or moving at low Reynolds number is also investigated. A thin 2D worm-like object wiggles by passing a wave along its centerline and its motion is simulated by the ALE moving mesh technology. The effects of wiggle amplitude and wavelength are studied. The mathematical model is a singular perturbation of the equations of force equilibrium.

Abstract [sv]

I föreliggande arbete simuleras dynamiken hos rörliga kroppar i krypströmning genom numerisk lösning av hastighets- och tryck-fält. Först undersöks krafterna på kroppar när en plan stationär vägg. För en horisontell och vertikal cirkulär cylinder och en sfär beräknas krafterna genom numerisk lösning av Stokes ekvation med finite element paketet COMSOL Multiphysics. De jämförs sedan med analytiska resultat erhållna med Reynolds smörjfilmteori.

Därefter studeras en 2D smal elliptisk form som ålar sig med en våg som fortplantar sig längs dess storaxel. Dess rörelse simuleras med ALE rörligt nät. Effekterna av vågrörelsens amplitud och våglängd uppskattas. Den matematiska modellen är en singulär störning av de ekvationer som uttrycker kraftjämvikt.

Place, publisher, year, edition, pages
Trita-CSC-E, ISSN 1653-5715 ; 2011:085
National Category
Computational Mathematics
URN: urn:nbn:se:kth:diva-130750OAI: diva2:654197
Educational program
Master of Science - Scientific Computing
Physics, Chemistry, Mathematics
Available from: 2013-10-07 Created: 2013-10-07

Open Access in DiVA

No full text

Other links
By organisation
School of Computer Science and Communication (CSC)
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 85 hits
ReferencesLink to record
Permanent link

Direct link