Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
General Purpose Computing on the GPU – Characteristics of suitable problems
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2012 (English)Independent thesis Advanced level (professional degree), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In a society that grows more and more dependent on fast digital data processing, many developers have turned their attention toward performing general-purpose computations on the graphics processing unit. This thesis explores what types of problems might be, or might not be, suitable for implementation on the GPU by taking a look at both classical and modern GPU concepts. Two computational problems – matrix multiplication and maximum value of a matrix – are implemented for both multi-core CPU and GPU and a comparison is presented. We reach the conclusion that the GPU can be an extremely potent computation unit as long as the problem is highly parallelizable, has no or very few branches and is computationally intensive.

Abstract [sv]

I ett samhälle som blir allt mer beroende av snabb digital databehandling har utvecklare och forskare börjat rikta sitt intresse åt att utföra generella beräkningar på datorns grafikprocessor, GPU:n. I detta examensarbete undersöks vilken typ av beräkningar som är lämpade, eller inte lämpade, att behandlas av GPU:n genom att ta en titt på både klassiska och moderna GPU koncept. Utöver detta tar vi också en djupare titt på hur två problem, matrismultiplikation och att hitta maxima i en matris, presterar på flerkärnig CPU och GPU och jämför resultaten. Vi har kommit till slutsatsen att GPU:n kan vara en mycket kraftfull beräkningsenhet, så länge problemet i fråga är högeligen paralleliserbart, saknar eller har väldigt få villkorliga förgreningar samt är beräkningsintensivt.

Place, publisher, year, edition, pages
2012.
Series
Kandidatexjobb CSC, K12049
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-131054OAI: oai:DiVA.org:kth-131054DiVA: diva2:654500
Educational program
Master of Science in Engineering - Computer Science and Technology
Uppsok
Technology
Supervisors
Examiners
Available from: 2013-10-07 Created: 2013-10-07

Open Access in DiVA

No full text

Other links

http://www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2012/rapport/ljungstrom_simon_OCH_ljungstrom_viktor_K12049.pdf
By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 229 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf