Change search
ReferencesLink to record
Permanent link

Direct link
Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices
Show others and affiliations
2013 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, no 9, 093002- p.Article in journal (Refereed) Published
Abstract [en]

Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understanding and validate the models of the in vessel build-up of the T inventory in ITER and future D-T devices. So far, research in these areas is largely supported by post-mortem analysis of wall tiles. However, access to samples will be very much restricted in the next-generation devices (such as ITER, JT-60SA, W7-X, etc) with actively cooled plasma-facing components (PFC) and increasing duty cycle. This has motivated the development of methods to measure the deposition of material and retention of plasma fuel on the walls of fusion devices in situ, without removal of PFC samples. For this purpose, laser-based methods are the most promising candidates. Their feasibility has been assessed in a cooperative undertaking in various European associations under EFDA coordination. Different laser techniques have been explored both under laboratory and tokamak conditions with the emphasis to develop a conceptual design for a laser-based wall diagnostic which is integrated into an ITER port plug, aiming to characterize in situ relevant parts of the inner wall, the upper region of the inner divertor, part of the dome and the upper X-point region.

Place, publisher, year, edition, pages
2013. Vol. 53, no 9, 093002- p.
Keyword [en]
Induced Breakdown Spectroscopy, Diagnostics, Components, Retention
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-131235DOI: 10.1088/0029-5515/53/9/093002ISI: 000324160400004ScopusID: 2-s2.0-84884367352OAI: diva2:655399

QC 20131011

Available from: 2013-10-11 Created: 2013-10-10 Last updated: 2013-10-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Petersson, PerRubel, Marek
By organisation
Fusion Plasma Physics
In the same journal
Nuclear Fusion
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
ReferencesLink to record
Permanent link

Direct link