Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparing shut-down strategies for proton exchange membrane fuel cells
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-1626-1067
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-2268-5042
Show others and affiliations
2014 (English)In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 254, 232-240 p.Article in journal (Refereed) Published
Abstract [en]

Application of system strategies for mitigating carbon corrosion of the catalyst support in proton exchange fuel cells (PEMFCs) is a requirement for PEMFC systems, especially in the case of systems for transport application undergoing thousands of start-ups and shut-downs (SU/SD) during its lifetime. This study compares several of the most common shut-down strategies for 1100 cycles SU/SD cycles at 70 C and 80% RH using commercially available fuel cell components. Each cycle simulates a prolonged shut-down, i.e. finishing each cycle with air filled anode and cathode. Furthermore, all start-ups are unprotected, i.e. introducing the H2 rich gas into an air filled anode. Finally, each cycle also includes normal fuel cell operation at 0.5 A cm-2 using synthetic reformate/air. H2 purge of the cathode and O2 consumption using a load were found to be the most effective strategies. The degradation rate using the H2 purge strategy was 23 μV cycle-1 at 0.86 A cm-2 using H 2 and air at the anode and cathode, respectively. This degradation rate may be regarded as a generally low value, especially considering that this value also includes the degradation rate caused by unprotected start-ups.

Place, publisher, year, edition, pages
2014. Vol. 254, 232-240 p.
Keyword [en]
Carbon corrosion, Catalyst support, Proton exchange membrane fuel cell, Start-up and shut-down, System strategies
National Category
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-133453DOI: 10.1016/j.jpowsour.2013.12.058ISI: 000332496300030Scopus ID: 2-s2.0-84892760898OAI: oai:DiVA.org:kth-133453DiVA: diva2:661442
Funder
StandUp
Note

QC 20140305. Updated from manuscript to article in journal.

Available from: 2013-11-04 Created: 2013-11-04 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Electrode degradation in proton exchange membrane fuel cells
Open this publication in new window or tab >>Electrode degradation in proton exchange membrane fuel cells
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The topic of this thesis is the degradation of fuel cell electrodes in proton exchange membrane fuel cells (PEMFCs). In particular, the degradation associated with localized fuel starvation, which is often encountered during start-ups and shut-downs (SUs/SDs) of PEMFCs. At SU/SD, O2 and H2 usually coexist in the anode compartment. This situation forces the opposite electrode, i.e. the cathode, to very high potentials, resulting in the corrosion of the carbon supporting the catalyst, referred to as carbon corrosion. The aim of this thesis has been to develop methods, materials and strategies to address the issues associated to carbon corrosion in PEMFC.The extent of catalyst degradation is commonly evaluated determining the electrochemically active surface area (ECSA) of fuel cell electrode. Therefore, it was considered important to study the effect of RH, temperature and type of accelerated degradation test (ADT) on the ECSA. Low RH decreases the ECSA of the electrode, attributed to re-structuring the ionomer and loss of contact with the catalyst.In the search for more durable supports, we evaluated different accelerated degradation tests (ADTs) for carbon corrosion. Potentiostatic holds at 1.2 V vs. RHE were found to be too mild. Potentiostatic holds at 1.4 V vs. RHE were found to induce a large degree of reversibility, also attributed to ionomer re-structuring. Triangle-wave potential cycling was found to irreversibly degrade the electrode within a reasonable amount of time, closely simulating SU/SD conditions.Corrosion of carbon-based supports not only degrades the catalyst by lowering the ECSA, but also has a profound effect on the electrode morphology. Decreased electrode porosity, increased agglomerate size and ionomer enrichment all contribute to the degradation of the mass-transport properties of the cathode. Graphitized carbon fibers were found to be 5 times more corrosion resistant than conventional carbons, primarily attributed to their lower surface area. Furthermore, fibers were found to better maintain the integrity of the electrode morphology, generally showing less degradation of the mass-transport losses. Different system strategies for shut-down were evaluated. Not doing anything to the fuel cell during shut-downs is detrimental for the fuel cell. O2 consumption with a load and H2 purge of the cathode were found to give around 100 times lower degradation rates compared to not doing anything and almost 10 times lower degradation rate than a simple air purge of the anode. Finally, in-situ measurements of contact resistance showed that the contact resistance between GDL and BPP is highly dynamic and changes with operating conditions.

Abstract [sv]

Denna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. 77 p.
Series
Trita-CHE-Report, ISSN 1654-1081 ; 2013:43
Keyword
PEMFC; PEFC; Porous electrodes; Carbon corrosion; Carbon nanotubes; Carbon fibers; Polyhedral carbon nanofoams; Phosphonated hydrocarbon ionomer; Mass-transport losses; Electrode morphology; Electrode collapse; Start-up and shut-down; System strategies; Stainless steel; Bi-polar plates; In-situ contact resistance.
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-133437 (URN)978-91-7501-890-4 (ISBN)
Public defence
2013-11-22, Kollegisalen, Brinellvägen 8, plan 4, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20131104

Available from: 2013-11-04 Created: 2013-11-01 Last updated: 2013-11-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Oyarce, AlejandroLagergren, CarinaLindbergh, Göran

Search in DiVA

By author/editor
Oyarce, AlejandroLagergren, CarinaLindbergh, Göran
By organisation
Applied Electrochemistry
In the same journal
Journal of Power Sources
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 400 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf