Change search
ReferencesLink to record
Permanent link

Direct link
Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
Show others and affiliations
2013 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 15, no 41, 17893-17902 p.Article in journal (Refereed) Published
Abstract [en]

Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All the particle coated surfaces exhibited similar friction coefficients, from which it may be concluded that the surface geometry, and not the roughness amplitude per se, influenced the measured friction. During measurements with hydrophobic surfaces, strong adhesive forces related to the formation of a bridging air cavity were evident from both normal force and friction force measurements. In contrast to the frictional forces between the hydrophilic surfaces, the friction coefficient for hydrophobic surfaces was found to depend on the surface structure and we believe that this dependence is related to the restricted movement of the three-phase line of the bridging air cavity. For measurements using a hydrophobic surface and a hydrophilic probe, the friction coefficient was significantly smaller compared to the two homogeneous systems. A layer of air or air bubbles on the hydrophobic surface working as a lubricating layer is a possible mechanism behind this observation.

Place, publisher, year, edition, pages
2013. Vol. 15, no 41, 17893-17902 p.
Keyword [en]
Microscale Friction, Hydration Forces, Amontons Law, Atomic-Scale, Adhesion, Water, Roughness, Lubrication, Lithography, Nanobubbles
National Category
Other Chemistry Topics
URN: urn:nbn:se:kth:diva-133671DOI: 10.1039/c3cp52196fISI: 000325400600021ScopusID: 2-s2.0-84885086683OAI: diva2:662723
Swedish Foundation for Strategic Research Swedish Research Council

QC 20131108

Available from: 2013-11-08 Created: 2013-11-08 Last updated: 2013-11-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Claesson, Per M.Swerin, AgneThormann, Esben
By organisation
Surface and Corrosion Science
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 19 hits
ReferencesLink to record
Permanent link

Direct link