Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Calibration and verification of a γ - Reθt transition prediction method for airfoil computations
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
2013 (English)In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013, 2013Conference paper, Published paper (Refereed)
Abstract [en]

This paper deals with the implementation and verification of a γ - Reθt correlation based transition prediction method previously presented by Langtry et al. The two additional transport equations used for predicting transition and a novel set of equations for the production terms are implemented into the Computational Fluid Dynamics code Edge. The model predicts two-dimensional transition phenomena such as transition due to Tollmein-Schlichting instabilities, bypass transition and separation induced transition. The transition prediction model is calibrated to the well-known Ercoftac wind tunnel tests using an optimization program based on a direct search method available in Matlab. The model is tested with several non-calibrated cases comparable with industry standard airfoils (low speed, transonic) and wind tunnel experiments as well as the MSES code that uses a en method. The main part of this work was performed as part of the research project Aerodynamic Loads Estimation at Extremes of the Flight Envelope (ALEF) (Grant Agreement no: 211785), 7th EU framework program.

Place, publisher, year, edition, pages
2013.
Keyword [en]
Calibration and verification, Computational Fluid Dynamics codes, Direct search methods, Optimization programs, Transition phenomenon, Transition prediction, Transition prediction methods, Wind tunnel experiment
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-133869Scopus ID: 2-s2.0-84881411272ISBN: 978-162410181-6 (print)OAI: oai:DiVA.org:kth-133869DiVA: diva2:663620
Conference
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013; Grapevine, TX; United States; 7 January 2013 through 10 January 2013
Funder
EU, FP7, Seventh Framework Programme, 211785
Note

QC 20131112

Available from: 2013-11-12 Created: 2013-11-11 Last updated: 2013-11-12Bibliographically approved

Open Access in DiVA

No full text

Scopus

Search in DiVA

By author/editor
Tomac, MaximillianPettersson, KarlRizzi, Arthur
By organisation
Aeronautical and Vehicle Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 266 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf