Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical implementation of a J(2)- and J(3)-dependent plasticity model based on a spectral decomposition of the stress deviator
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).ORCID iD: 0000-0003-2470-7679
2013 (English)In: Computational Mechanics, ISSN 0178-7675, E-ISSN 1432-0924, Vol. 52, no 5, 1059-1070 p.Article in journal (Refereed) Published
Abstract [en]

A new plasticity model with a yield criterion that depends on the second and third invariants of the stress deviator is proposed. The model is intended to bridge the gap between von Mises' and Tresca's yield criteria. An associative flow rule is employed. The proposed model contains one new non-dimensional key material parameter, that quantifies the relative difference in yield strength between uniaxial tension and pure shear. The yield surface is smooth and convex. Material strain hardening can be ascertained by a standard uniaxial tensile test, whereas the new material parameter can be determined by a test in pure shear. A fully implicit backward Euler method is developed and presented for the integration of stresses with a tangent operator consistent with the stress updating scheme. The stress updating method utilizes a spectral decomposition of the deviatoric stress tensor, which leads to a stable and robust updating scheme for a yield surface that exhibits strong and rapidly changing curvature in the synoptic plane. The proposed constitutive theory is implemented in a finite element program, and the influence of the new material parameter is demonstrated in two numerical examples.

Place, publisher, year, edition, pages
2013. Vol. 52, no 5, 1059-1070 p.
Keyword [en]
Plasticity, Yield criterion, Third invariant, Tresca, Spectral decomposition
National Category
Computational Mathematics Applied Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-133959DOI: 10.1007/s00466-013-0863-6ISI: 000325810300006Scopus ID: 2-s2.0-84892978913OAI: oai:DiVA.org:kth-133959DiVA: diva2:664455
Note

QC 20140403

Available from: 2013-11-15 Created: 2013-11-14 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kroon, MartinFaleskog, Jonas
By organisation
Solid Mechanics (Dept.)
In the same journal
Computational Mechanics
Computational MathematicsApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf