Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Micro Gas-Turbine Design for Small-Scale Hybrid Solar Power Plants
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-3789-8654
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2013 (English)In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 135, no 11, p. 113001-Article in journal (Refereed) Published
Abstract [en]

Hybrid solar micro gas-turbines are a promising technology for supplying controllable low-carbon electricity in off-grid regions. A thermoeconomic model of three different hybrid micro gas-turbine power plant layouts has been developed, allowing their environmental and economic performance to be analyzed. In terms of receiver design, it was shown that the pressure drop is a key criterion. However, for recuperated layouts, the combined pressure drop of the recuperator and receiver is more important. In terms of both electricity costs and carbon emissions, the internally-fired recuperated micro gas-turbine was shown to be the most promising solution of the three configurations evaluated. Compared to competing diesel generators, the electricity costs from hybrid solar units are between 10% and 43% lower, while specific CO2 emissions are reduced by 20–35%.

Place, publisher, year, edition, pages
2013. Vol. 135, no 11, p. 113001-
Keywords [en]
solar thermal power, micro gas-turbine, hybrid, layouts
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-134221DOI: 10.1115/1.4025077ISI: 000326160900018Scopus ID: 2-s2.0-84887046933OAI: oai:DiVA.org:kth-134221DiVA, id: diva2:665618
Note

QC 20131203

Available from: 2013-11-20 Created: 2013-11-20 Last updated: 2018-04-17Bibliographically approved
In thesis
1. Solar receiver development for gas-turbine based solar dish systems
Open this publication in new window or tab >>Solar receiver development for gas-turbine based solar dish systems
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Small-scale concentrating solar power plants such as micro gas-turbine based solar dish systems have the potential to harness solar energy in an effective way and supply electricity to customers in remote areas. In such systems, the solar receiver transfers the power of concentrated solar radiation to the working fluid of the power conversion cycle. It is one of the key components as it needs to operate at high temperatures to ensure a high power cycle efficiency and under high flux densities to ensure a high receiver efficiency. In order to address these challenges and to ensure efficient and reliable operation innovative designs are needed.

This research work focuses on the complete development of a novel solar receiver applying a new systematic design and analysis methodology. Therefore, a comprehensive receiver design and experimental evaluation process were developed and implemented. The design process includes the identification of technical specifications and requirements, the development of receiver design tools of different investigation levels coupled with multi-objective optimization tools, the evaluation of scaling effects between tests in the KTH high-flux solar simulator and the full-scale solar dish system. As a result of the design process a representative final receiver was established with material temperatures and stresses below critical limits while respecting the design specification.

The experimental evaluation includes the enhancement of the KTH high-flux solar simulator to provide stable and reliable operating conditions, the precise characterization of the radiative boundary conditions, the design of a receiver test bed recreating the operating behavior of a gas-turbine, and the final receiver testing for multiple operating points. It was shown that the prototype reaches an efficiency of 69.3% for an air outlet temperature of 800°C and a mass flow of 29.5 g/s. For a larger mass flow of 38.4 g/s a receiver efficiency of 84.8% was achieved with an air outlet temperature of 749°C.

The measurement results obtained were then used for a multi-point validation of the receiver design tools, resulting in a high level of confidence in the accuracy of the tools. The validated models were then harnessed to calculate the performance of a full-scale solar receiver integrated into the OMSoP solar dish system. It was shown that a solar receiver can be designed, which delivers air at 800°C with a receiver efficiency of 82.2%.

Finally, the economic potential of micro gas-turbine based solar systems was investigated and it was shown that they are ideally suited for small-scale stand-alone and off-grid applications.

The results of the receiver development highlight the feasibility of using volumetric solar receivers to provide heat input to micro gas-turbine based solar dish systems and no major hurdles were found.

Abstract [sv]

Småskalig koncentrerad solkraft som mikrogasturbinbaserade solkraftverk med paraboliska solfångare visar potential att utnyttja solens energi på ett effektivt sätt och levererar el till kunder i avlägsna områden. I dessa solkraftverk är det solmottagaren som överför energin av koncentrerat solljus till kraftomvandlingssystemets arbetsmedium. Mottagaren är en av de viktigaste komponenterna eftersom den drivs vid höga temperaturer för att nå en hög systemverkningsgrad och är utsatt för höga ljusintensiteter för att nå en hög komponentverkningsgrad. För att hantera dessa utmaningar och garantera en effektiv och pålitlig drift behövs nya och innovativa lösningar.

Syftet med detta arbete är att utveckla en solmottagare genom att använda en systematisk design- och analysmetodik. Därför utvecklades en omfattande design- och analysprocess som inkluderar identifiering av tekniska specifikationer, utveckling av designverktyg för olika detaljnivåer i samband med optimeringsmetoder, utvärdering av skalningseffekter mellan laboratorietester och fullskaliga tester. Som resultatet av designprocessen konstruerades en solmottagare för den experimentella utvärderingen där alla materialtemperaturer och materialspänningar är inom tillåtna nivåer.

Den experimentella utvärderingen inkluderar förbättringarna av KTH:s solsimulator för att säkerställa stabil och pålitlig drift, karakterisering av instrålningen, utveckling av en solmottagartestbädd, och solmottagarexperiment för olika driftspunkter. Resultaten visar att solmottagaren uppnår en verkningsgrad på 69.3% för en luftutloppstemperatur på 800°C och ett massflöde på 29.5 g/s. Verkningsgraden ökar till 84.8% för ett massflöde på 40 g/s med en luftutloppstemperatur på 749°C.

De experimentella resultaten användes för att validera de utvecklade solmottagardesignverktygen genom en flerpunktsvalideringsprocess vilket resulterar i ett högt förtroende av designverktygens noggrannhet. De validerade designverktygen användes för att beräkna prestandan av en fullskalig solmottagare för integreringen i OMSoP solkraftverket. Resultaten visar att konceptet uppnår en luftutloppstemperatur på 800°C med en verkningsgrad på 82.5%.

Till sist undersöktes den ekonomiska potentialen av mikrogasturbinbaserade solkraftverk. De teknoekonomiska analyserna visar att kraftverken är ideal för småskaliga off-grid applikationer.

Resultaten av solmottagarutvecklingen framhäver möjligheten att använda volumetriska solmottagare för att leverera värme till mikrogasturbinbaserade solkraftverk med paraboliska solfångare och inga stora problem upptäcktes.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 131
Series
TRITA-ITM-AVL ; 2018:4
Keywords
Concentrating solar power, volumetric solar receiver, development, experimental evaluation, validation, Koncentrerad solkraft, volumetrisk solmottagare, utveckling, experimentell utvärdering, validering
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-226343 (URN)978-91-7729-746-8 (ISBN)
Public defence
2018-05-15, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20180418

Available from: 2018-04-18 Created: 2018-04-17 Last updated: 2018-04-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Aichmayer, Lukas

Search in DiVA

By author/editor
Aichmayer, LukasSpelling, JamesLaumert, BjörnFransson, Torsten
By organisation
Heat and Power Technology
In the same journal
Journal of engineering for gas turbines and power
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 524 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf