Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advanced solute conservation equations for dendritic solidification processes part II: Numerical simulations and comparisons
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Processing.
2013 (English)In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 84, no 6, 584-606 p.Article in journal (Refereed) Published
Abstract [en]

The mathematical model of derived solute equations in part I for equiaxed dendritic solidification with melt convection streams and interdendritic thermo-metallurgical strain is applied numerically to predict macrosegregation distributions with different diffusing mechanisms in dendritic solid. Numerical and experimental results are present for solidification of a Al-4.5% Cu alloy inside horizontal rectangular cavity at different superheats. The numerical simulations were performed by using simpler method developed by Patanker. The experiments were conducted to measure the cooling curves via thermocouples and the metallurgical examinations to measure the grain size and macrosegregation distributions in Part I. Preliminary validity of the model is demonstrated by the qualitative and quantitative agreements between the measurements and predications of cooling curves and predicted macrosegregation distributions including mushy permeability and interdendritic strain. In addition, several important features of macrosegregation in equiaxed dendritic solidification are identified through this combined experimental and numerical study. Also, quantitative agreements between the numerical simulations and experiments reveal several areas for future research work. The differences and errors between predicted macrosegregation results under different diffusing mechanisms have been discussed. The mathematical model of derived solute equations in Part I for equiaxed dendritic solidification with melt convection streams and thermal is applied numerically to predict macrosegregation distributions with different diffusing mechanisms in dendritic solid. Numerical and experimental results are present for solidification of a Al-4.5% Cu alloy inside horizontal rectangular cavity at different superheats.

Place, publisher, year, edition, pages
2013. Vol. 84, no 6, 584-606 p.
Keyword [en]
equiaxed structure, heat flow, macrosegregation mushy permeability, interdendritic strain
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-134271DOI: 10.1002/srin.201200237ISI: 000320101700009Scopus ID: 2-s2.0-84878678594OAI: oai:DiVA.org:kth-134271DiVA: diva2:666883
Note

QC 20131125

Available from: 2013-11-25 Created: 2013-11-20 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
El-Bealy, Mostafa Omar
By organisation
Materials Processing
In the same journal
Steel Research International
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf