Change search
ReferencesLink to record
Permanent link

Direct link
Linker Unit Modification of Triphenylamine-Based Organic Dyes for Efficient Cobalt Mediated Dye-Sensitized Solar Cells
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
Show others and affiliations
2013 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 41, 21029-21036 p.Article in journal (Refereed) Published
Abstract [en]

Linker unit modification of donor-linker-acceptor-based organic dyes was investigated with respect to the spectral and physicochemical properties of the dyes. The spectral response for a series of triphenylamine (TPA)-based organic dyes, called LEG1-4, was shifted into the red wavelength region, and the extinction coefficient of the dyes was increased by introducing different substituted dithiophene units on the pi-conjugated linker. The photovoltaic performance of dye-sensitized solar cells (DSCs) incorporating the different dyes in combination with cobalt-based electrolytes was found to be dependent on dye binding. The binding morphology of the dyes on the TiO2 was studied using photoelectron spectroscopy, which demonstrated that the introduction of alkyl chains and different substituents on the dithiophene linker unit resulted in a larger tilt angle of the dyes with respect to the normal of the TiO2-surface, and thereby a lower surface coverage. The good photovoltaic performance for cobalt electrolyte-based DSCs found here and by other groups using TPA-based organic dyes with a cyclopentadithiophene linker unit substituted with alkyl chains was mainly attributed to the extended spectral response of the dye, whereas the larger tilt angle of the dye with respect to the TiO2-surface resulted in less efficient packing of the dye molecules and enhanced recombination between electrons in TiO2 and Co(III) species in the electrolyte.

Place, publisher, year, edition, pages
2013. Vol. 117, no 41, 21029-21036 p.
Keyword [en]
Conjugated linkers, Dye-Sensitized solar cell, Extinction coefficients, Photovoltaic performance, Physicochemical property, Spectral response, Surface coverages, Wavelength regions
National Category
Physical Chemistry
URN: urn:nbn:se:kth:diva-134569DOI: 10.1021/jp403619cISI: 000326125800001ScopusID: 2-s2.0-84886008066OAI: diva2:667633
Swedish Energy AgencyKnut and Alice Wallenberg FoundationSwedish Research CouncilEU, FP7, Seventh Framework Programme, 246124StandUp

QC 20131127

Available from: 2013-11-27 Created: 2013-11-25 Last updated: 2013-11-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gabrielsson, ErikSun, Licheng
By organisation
Organic ChemistryCentre of Molecular Devices, CMD
In the same journal
The Journal of Physical Chemistry C
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 39 hits
ReferencesLink to record
Permanent link

Direct link