Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distributed model-invariant detection of unknown inputs in networked systems
KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0001-9940-5929
2013 (English)In: Proceedings of the 2nd ACM international conference on High confidence networked systems, 2013, 127-133 p.Conference paper, Published paper (Refereed)
Abstract [en]

This work considers hypothesis testing in networked systems under severe lack of prior knowledge. In previous work we derived a centralized Uniformly Most Powerful Invariant (UMPI) approach to testing unknown inputs in unknown Linear Time Invariant (LTI) networked dynamics subject to unknown Gaussian noise. The detector was also shown to have Constant False Alarm Rate (CFAR) properties. Nonetheless, in large-scale systems, centralized testing may be infeasible or undesirable. Thus, we develop a distributed testing version of our previous work that utilizes a statistic that is maximally invariant to the unknown parameters and the nonlocal/neighboring measurements. Similar to the centralized approach, the distributed test is shown to have CFAR properties and to have performance that asymptotically approaches that of the centralized test. Simulation results illustrate that the performance of the distributed approach suffers marginal performance degradation in comparison to the centralized approach. Insight to this phenomena is provided through a discussion.

Place, publisher, year, edition, pages
2013. 127-133 p.
Keyword [en]
invariant testing, networked systems, Centralized approaches, Constant false alarm rate, Distributed approaches, Distributed testing, Linear time invariant, Performance degradation, Uniformly most powerful invariant, Gaussian noise (electronic)
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-134469DOI: 10.1145/2461446.2461464Scopus ID: 2-s2.0-84877634902ISBN: 9781450319614 (print)OAI: oai:DiVA.org:kth-134469DiVA: diva2:668642
Conference
2013 2nd ACM International Conference on High Confidence Networked Systems, HiCoNS 2013, as Part of CPSWeek 2013, 9 April 2013 through 11 April 2013, Philadelphia, PA
Note

QC 20131202

Available from: 2013-12-02 Created: 2013-11-25 Last updated: 2013-12-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Johansson, Karl Henrik

Search in DiVA

By author/editor
Varagnolo, DamianoJohansson, Karl Henrik
By organisation
Automatic ControlACCESS Linnaeus Centre
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf