Change search
ReferencesLink to record
Permanent link

Direct link
Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed fatigue assessment guidelines
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures. Department of Applied Mechanics, Aalto University, Espoo, Finland .
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.ORCID iD: 0000-0003-4180-4710
2013 (English)In: Welding in the World, ISSN 0043-2288, Vol. 57, no 6, 803-822 p.Article in journal (Refereed) Published
Abstract [en]

In the past decade, high-frequency mechanical impact (HFMI) has significantly developed as a reliable, effective, and user-friendly method for post-weld fatigue strength improvement technique for welded structures. During this time, period 46 documents on HFMI technology or fatigue improvements have been presented within Commission XIII of the International Institute of Welding. This paper presents one possible approach to fatigue assessment for HFMI-improved joints. Stress analysis methods based on nominal stress, structural hot spot stress, and effective notch stress are all discussed. The document considered the observed extra benefit that has been experimentally observed for HFMI-treated high-strength steels. Some observations and proposals on the effect of loading conditions like high mean stress fatigue cycles, variable amplitude loading, and large amplitude/low cycle fatigue cycles are given. Special considerations for low stress concentration details are also given. Several fatigue assessment examples are provided in an appendix. A companion paper has also been prepared concerning HFMI equipment, proper procedures, safety, training, quality control measures, and documentation has also been prepared. It is hoped that these guidelines will provide stimulus to researchers working in the field to test and constructively criticize the proposals made with the goal of developing international guidelines relevant to a variety of HFMI technologies and applicable to many industrial sectors. The proposal can also be used as a means of verifying the effectiveness of new equipment as it comes to the market.

Place, publisher, year, edition, pages
2013. Vol. 57, no 6, 803-822 p.
Keyword [en]
High-frequency mechanical impact (HFMI), Weld toe improvement, Fatigue improvement, High-strength steels, Fatigue design, Hot spot stress, Effective notch stress
National Category
Metallurgy and Metallic Materials
URN: urn:nbn:se:kth:diva-134736DOI: 10.1007/s40194-013-0075-xISI: 000326052000004ScopusID: 2-s2.0-84887233167OAI: diva2:669137

QC 20131203

Available from: 2013-12-03 Created: 2013-11-28 Last updated: 2013-12-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Marquis, Gary B.Barsoum, Zuheir
By organisation
Lightweight Structures
In the same journal
Welding in the World
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link