Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization and Modelling of the Mechanical Properties of Pressboard
ABB Corporate Research.
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).ORCID iD: 0000-0002-7236-6365
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).ORCID iD: 0000-0001-8699-7910
ABB Corporate Research.
Show others and affiliations
2013 (English)In: 2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), IEEE , 2013, 563-566 p.Conference paper, Published paper (Refereed)
Abstract [en]

Cellulose-based components constitute the bulk of the current insulation for transformers. Cellulose is an organic polymer material which combines excellent electrical properties and good mechanical performance. As a polymeric material, cellulose is very sensitive to moisture and temperature. These factors can influence the electrical and mechanical performance of a transformer throughout its lifetime. In order to ensure the quality of the product during transformer manufacturing, as well as during transformer life-time services, adequate models for predicting the physical properties of its constituents are needed. The present investigation tackles the mechanical description of pressboard. For this purpose, a three dimensional mechanical model is developed for simulating the in-plane and out-of-plane behavior of the pressboard material. The model is based on an anisotropic viscoelastic-viscoplastic constitutive law, which includes features that are particular for cellulose-based materials, e.g. the peculiar double nature of fiber-network-based and porous material. The material is orthotropic by nature, i.e. the in-plane mechanical properties markedly differ from the out-of-plane ones. Particular regard is taken when considering the effect of out-of-plane stresses which both cause viscous deformation and permanent compaction. The analyses on the mechanical behavior of pressboard are performed by comparing the experimental data on pressboard and the results of model simulations.

Place, publisher, year, edition, pages
IEEE , 2013. 563-566 p.
Series
Conference on Electrical Insulation and Dielectric Phenomena. Annual Report, ISSN 0084-9162
Keyword [en]
Compressbility test, Creep, Finite Element Method (FEM), Mechanical properties, Pressboard
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-136193DOI: 10.1109/CEIDP.2013.6748145Scopus ID: 2-s2.0-84901741647ISBN: 978-147992596-4 (print)OAI: oai:DiVA.org:kth-136193DiVA: diva2:675584
Conference
2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena, CEIDP 2013; Shenzhen; China; 20 October 2013 through 23 October 2013
Note

QC 20131218

Available from: 2013-12-04 Created: 2013-12-04 Last updated: 2014-08-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusConference website

Authority records BETA

Tjahjanto, DennyÖstlund, Sören

Search in DiVA

By author/editor
Tjahjanto, DennyÖstlund, Sören
By organisation
Solid Mechanics (Div.)
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf