Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the regularity of solutions of the inhomogeneous infinity laplace equation
Department of Mathematical Sciences, Norwegian University of Science and Technology, Alfred Getz vei 1, NO-7491 Trondheim, Norway .ORCID iD: 0000-0003-4309-9242
2014 (English)In: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 142, no 1, 277-288 p.Article in journal (Refereed) Published
Abstract [en]

We study the inhomogeneous infinity Laplace equation and prove that for bounded and continuous inhomogeneities, any blow-up is linear but not necessarily unique. If, in addition, the inhomogeneity is assumed to be C-1, then we prove that any solution is differentiable, i.e., that any blow-up is unique.

Place, publisher, year, edition, pages
2014. Vol. 142, no 1, 277-288 p.
Keyword [en]
Harmonic-Functions, 2 Dimensions
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-136470DOI: 10.1090/S0002-9939-2013-12180-5ISI: 000326580100028Scopus ID: 2-s2.0-84886301117OAI: oai:DiVA.org:kth-136470DiVA: diva2:676484
Note

QC 20131206

Available from: 2013-12-06 Created: 2013-12-05 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Lindgren, Erik

Search in DiVA

By author/editor
Lindgren, Erik
In the same journal
Proceedings of the American Mathematical Society
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf