Change search
ReferencesLink to record
Permanent link

Direct link
All-Metal Aromaticity: Revisiting the Ring Current Model among Transition Metal Clusters
Show others and affiliations
2013 (English)In: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 9, no 11, 4789-4796 p.Article in journal (Refereed) Published
Abstract [en]

We present new insight into the nature of aromaticity in metal clusters. We give computational arguments in favor of using the ring-current model over local indices, such as nucleus independent chemical shifts, for the determination of the magnetic aromaticity. Two approaches for estimating magnetically induced ring currents are employed for this purpose, one based on the quantum theory of atoms in molecules (QTAIM) and the other where magnetically induced current densities (MICD) are explicitly calculated. We show that the two-zone aromaticity/antiaromaticity of a number of 3d metallic clusters (Sc-3(-), Cu-3(+), and Cu-4(2-)) can be explained using the QTAIM-based magnetizabilities. The reliability of the calculated atomic and bond magnetizabilities of the metallic clusters are verified by comparison with MICD computed at the multiconfiguration self-consistent field (MCSCF) and density functional levels of theory. Integrated MCSCF current strength susceptibilities as well as a visual analysis of the calculated current densities confirm the interpretations based on the QTAIM magnetizabilities. In view of the new findings, we suggest a simple explanation based on classical electromagnetic theory to explain the anomalous magnetic shielding in different transition metal clusters. Our results suggest that the nature of magnetic aromaticity/antiaromaticity in transition-metal clusters should be assessed more carefully based on global indices.

Place, publisher, year, edition, pages
2013. Vol. 9, no 11, 4789-4796 p.
Keyword [en]
Consistent-Field Calculations, Including Atomic Orbitals, Induced Current Densities, Ab-Initio, Magnetic Aromaticity, Electron-Density, Perturbation-Theory, Response Properties, Absolute Hardness, Chemical-Shifts
National Category
Other Chemistry Topics
URN: urn:nbn:se:kth:diva-138371DOI: 10.1021/ct4007184ISI: 000327044500013ScopusID: 2-s2.0-84887834903OAI: diva2:681700

QC 20131220

Available from: 2013-12-20 Created: 2013-12-19 Last updated: 2013-12-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Bast, Radovan
By organisation
Theoretical Chemistry and Biology
In the same journal
Journal of Chemical Theory and Computation
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 30 hits
ReferencesLink to record
Permanent link

Direct link