Change search
ReferencesLink to record
Permanent link

Direct link
Reformate Hydrogen Fuel in PEM Fuel Cells: the Effect of Alkene Impurities on Anode Activity
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-2268-5042
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-0452-0703
2013 (English)In: ECS Transactions, Electrochemical Society, 2013, 1857-1865 p.Conference paper (Refereed)
Abstract [en]

Reformate hydrogen contains many impurities, some are well known while others have been less studied. Hydrocarbons are possible impurities in reformate hydrogen and are among those less studied. This study if aimed at alkenes, with special focus on propene. Adsorption and desorption on the Pt catalyst is studied using stripping cyclic voltammetry combined with mass spectrometry. The results show that although the effect of propene in the presence of hydrogen is expected to be minimal, adsorption and blockage of catalytic sites cannot be ruled out. A small amount of ad-species is formed on Pt at low adsorption potentials, and in the presence of hydrogen, although suppression of the hydrogen desorption peak was minimal if hydrogen was adsorbed on the Pt catalyst prior to exposure.

Place, publisher, year, edition, pages
Electrochemical Society, 2013. 1857-1865 p.
, ECS Transactions, ISSN 1938-5862 ; 58
Keyword [en]
Adsorption, Catalyst supports, Cyclic voltammetry, Desorption, Hydrocarbons, Mass spectrometry, Platinum, Propylene, Proton exchange membrane fuel cells (PEMFC)
National Category
Other Chemical Engineering
URN: urn:nbn:se:kth:diva-138885DOI: 10.1149/05801.1857ecstISI: 000354475600184ScopusID: 2-s2.0-84905008227OAI: diva2:681903
224th ECS Meeting, October 27 – November 1, 2013, San Francisco, California

QC 20140214

Available from: 2013-12-20 Created: 2013-12-20 Last updated: 2016-10-07Bibliographically approved
In thesis
1. The Impact of Hydrocarbon and Carbon Oxide Impuritiesin the Hydrogen Feed of a PEM Fuel Cell
Open this publication in new window or tab >>The Impact of Hydrocarbon and Carbon Oxide Impuritiesin the Hydrogen Feed of a PEM Fuel Cell
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The proton exchange membrane fuel cell generates electricity from hydrogen and oxygen (from air) through electrocatalytic reactions in an electrochemical cell. The Pt/C catalyst, commonly used in PEM fuel cells, is very sensitive to impurities that can interact with the active catalyst sites and limit fuel cell performance. Unfortunately, most hydrogen is currently produced from fossil sources, and inevitably contains impurities.

The subject of this thesis is the effect of hydrogen impurities on the operation of a PEM fuel cell using a Pt/C anode. The impurities studied are carbon monoxide (CO), carbon dioxide (CO2), and selected hydrocarbons. Particular focus is given to the interaction between the impurities studied and the anode catalyst. The main method used in the study involved performing cyclic voltammetry and mass spectrometry, simultaneously. Other electrochemical techniques are also employed.

The results show that all the impurities studied adsorb to some extent on the Pt/C catalyst surface, and require potentials comparable to that of CO oxidation, i.e., about 0.6V, or higher to be removed by oxidation to CO2. For complete oxidation of propene, and toluene, potentials of above 0.8, and 1.0V, respectively, are required. The unsaturated hydrocarbons can be desorbed to some extent by reduction, but oxidation is required for complete removal. Adsorption of ethene, propene, and CO2 is dependent on the presence of adsorbed or gaseous hydrogen. Hydrogen inhibits ethene and propene adsorption, but facilitates CO2 adsorption. Adsorption of methane and propane is very limited and high concentrations of methane cause dilution effects only.

The adlayer formed on the Pt/C anode catalyst in the presence of CO2, or moderate amounts of hydrocarbons, is found to be insffuciently complete to notably interfere with the hydrogen oxidation reaction. Higher concentrations of toluene do, however, limit the reaction.

Abstract [sv]

Polymerelektrolytbränslecellen genererar elektricitet fran vätgas och syrgas (fran luft) genom elektrokatalytiska reaktioner i en elektrokemisk cell. Den platina-baserade katalysator som oftast används i dessa bränsleceller är känslig mot föroreningar, då dessa kan interagera med katalysatorns aktiva yta, och därmed begränsna bränslecellens prestanda. Tyvärr produceras dagens vätgas huvudsakligen fran fossila källor och innehåller därför oundvikligen föroreningar.

Denna avhandling behandlar hur olika vätgasföroreningar påverkar katalysatorns aktivitet och bränslecellens drift. De föroreningar som studeras är kolmonoxid (CO) och koldioxid (CO2), samt ett antal mindre kolväten. Störst fokus ligger på hur dessa föroreningar interagerar med anodens Pt/C katalysator. Den metod som huvudsakligen används är cyklisk voltammetri kombinerat med masspektrometri, men flera elektrokemiska metoder har använts.

Resultaten visar att alla undersökta föroreningar adsorberar på Pt/C katalysatorns yta i större eller mindre utstreckning. For att avlägsna det adsoberade skiktet genom oxidation till CO2 krävs potentialer jämförbara med CO oxidation, dvs ca 0,6V, eller högre. Fullständig oxidation av propen eller toluen kräver potentialer högre än 0,8V respektive 1,0V. De omättade kolvätena kan delvis avlägsnas genom reduktion, men fullständig avlägsning kräver oxidation. Närvaron av väte, i gasform eller adsorberat pa katalysatorn, hämmar adsorptionen av eten och propen, men främjar CO2 adsorption. Metan och propan adsorberar i mycket begränsad utstreckning på Pt/C katalysatorns yta. De prestandaförluster som uppstår av höga koncentrationer av metan förklaras av utspädning av vätgasen.

Det adsorberade skiktet som bildas när Pt/C katalysatorn exponeras för CO2 eller måttliga koncentrationer av studerade kolväten, är inte tillräckligt heltäckande for att märkbart påverka vätgasreduktionen. Däremot kan höga koncentrationer av toluen begränsa reaktionen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 91 p.
TRITA-CHE-Report, ISSN 1654-1081 ; 2016:26
Fuel Cell, Hydrogen Impurities, Carbon Monoxide, Carbon Dioxide, Ethene, Propene, Methane, Propane, Toluene, Electrochemically Active Surface Area, Cyclic Voltammetry, Mass Spectrometry, bränslecell, vätgasföroreningar, kolmonoxid, koldioxid, eten, propen, metan, propan, toluen, elektrokemisk aktiv yta, cyklisk voltammetri, masspektrometri
National Category
Chemical Engineering
Research subject
Chemical Engineering
urn:nbn:se:kth:diva-193694 (URN)978-91-7729-008-7 (ISBN)
Public defence
2016-10-28, K2, Teknikringen 28, Stockholm, 10:00 (English)

QC 20161010

Available from: 2016-10-10 Created: 2016-10-07 Last updated: 2016-10-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusFull text in ECS

Search in DiVA

By author/editor
Kortsdottir, KatrinPérez Ferriz, Francisco JavierLagergren, CarinaWreland Lindström, Rakel
By organisation
Applied Electrochemistry
Other Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link