Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cooperative Device-to-Device Communications in the Downlink of Cellular Networks
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab). KTH, School of Information and Communication Technology (ICT), Centres, Center for Wireless Systems, Wireless@kth.ORCID iD: 0000-0002-2370-4567
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Radio Systems Laboratory (RS Lab). KTH, School of Information and Communication Technology (ICT), Centres, Center for Wireless Systems, Wireless@kth.ORCID iD: 0000-0001-9697-9978
2014 (English)In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), 2014, 2265-2270 p.Conference paper, Published paper (Refereed)
Abstract [en]

We propose a cooperative device-to-device (D2D) communications framework in order to combat the problem of congestion in crowded communication environments. The idea is to allow a D2D transmitter to act as an in-band relay for a cellular link and at the same time transmit its own data by employing superposition coding in the downlink. Cooperation between the cellular link and D2D transmitter eases down the requirement on the interference. The main benefit of the proposed method is in increasing the number of connections per unit area with the same spectrum usage. It could also be beneficial to offload over-loaded cells. We formulate our problem to minimize the assigned power for cooperation while making sure the cellular user’s performance does not degrade. Our results show that cooperation possibilities and improvement in overall cell capacity increase with the number of cellular users within the cell as well as the cell size.

Place, publisher, year, edition, pages
2014. 2265-2270 p.
Series
IEEE Wireless Communications and Networking Conference. Proceedings, ISSN 1525-3511
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-139017DOI: 10.1109/WCNC.2014.6952682ISBN: 9781479930838 (print)OAI: oai:DiVA.org:kth-139017DiVA: diva2:682164
Conference
2014 IEEE Wireless Communications and Networking Conference, WCNC 2014; Istanbul; Turkey; 6 April 2014 through 9 April 2014
Projects
Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society (METIS)
Funder
EU, FP7, Seventh Framework Programme
Note

QC 20150529

Available from: 2013-12-23 Created: 2013-12-23 Last updated: 2015-06-11Bibliographically approved
In thesis
1. Cooperative Spectrum Sharing and Device-to-Device Communications
Open this publication in new window or tab >>Cooperative Spectrum Sharing and Device-to-Device Communications
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The steep growth in the mobile data traffic has gained a lot of attention in recent years. This growth is mainly the result of emerging applications, multimedia services, and revolutions in the device technology. With current deployments and radio resources, operators will not be able to cope with the growing demands. Consequently, there is a need to either provide new resources or increase the efficiency of what is available. Proposed solutions for accommodating growing data traffic are based on improvements in three dimensions: efficient use of radio resources especially the spectrum, technology advancements, and densifying the current infrastructure. In this thesis, we focus on the spectrum dimension. Providing more spectrum is a long-term process. However, increasing the spectrum usage and efficiency can be put rapidly in practice. We discuss potential solutions in the area of spectrum sharing. Among enabling technologies to facilitate spectrum sharing, we consider the cognitive radio and device-to-device (D2D) communications.

In order to gain from sharing the spectrum, systems need to somehow deal with extra sources of interference. In the first part of the thesis, we consider a primary-secondary sharing model in cognitive radio networks. We employ the cooperative communication method in order to facilitate the access of the secondary system to the licensed spectrum of the primary system, and therefore increase the spectrum usage. The cooperation between the two systems is formed provided that it is beneficial for the primary system. In this way, the primary users' quality-of-service can be preserved while at the same time the secondary users can access the spectrum. This cooperative approach prevents both systems from concurrent transmissions. As a consequence, the need for interference control techniques are eliminated. We evaluate different models and transmission schemes and optimize the corresponding parameters to quantify the gain resulting from cooperative spectrum sharing.

In the second part of the thesis, we consider spectrum sharing within one system between different types of users. This is done in the context of D2D communications where close proximity users can transmit directly to each other. For this type of communications, either dedicated resources are allocated or resources of the cellular users are reused. We first study the feasibility of cooperation between D2D and cellular users and identify the scenarios where it can be beneficial. Then we take on a challenging problem which guarantees the gain from the D2D communication, namely the mode selection. For this problem, we characterize the decision criteria that determines if D2D communication is gainful. Next, we focus on the problem of interference in D2D communications underlaying cellular networks, where the same spectrum is reused in the spatial domain. In such scenarios, the potential gain is determined by how the interference is managed, which in turn depends on the amount of available information at the base station. The more information is required, the more signaling is needed. In this part of the thesis, we address the trade-off between the signaling overhead and the performance of the system and propose a novel approach for interference control which requires very little information on the D2D users.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. x, 49 p.
Series
TRITA-ICT-COS, ISSN 1653-6347 ; 1405
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Communication Systems Telecommunications
Identifiers
urn:nbn:se:kth:diva-145013 (URN)
Presentation
2014-06-02, sal D, Forum, KTH-ICT, Isafjordsgatan 39, Kista, 13:00 (English)
Opponent
Supervisors
Funder
Wireless@kth
Note

QC 20140509

Available from: 2014-05-09 Created: 2014-05-05 Last updated: 2014-05-16Bibliographically approved
2. Device-to-Device Communications for Future Cellular Networks: Challenges, Trade-Offs, and Coexistence
Open this publication in new window or tab >>Device-to-Device Communications for Future Cellular Networks: Challenges, Trade-Offs, and Coexistence
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The steep growth in mobile data traffic has gained a lot of attention in recent years. With current infrastructure deployments and radio resources, operators will not be able to cope with the upcoming demands. Consequently, discussions of the next generation of mobile networks, referred to as the fifth generation (5G), have started in both academia and industry. In addition to more capacity, stringent requirements for improving energy efficiency, decreasing delays, and increasing reliability have been envisioned in 5G. Many solutions have been put forward, one of them being device-to-device (D2D) communications where users in close proximity can transmit directly to one another bypassing the base station (BS).

In this thesis, we identify trade-offs and challenges of integrating D2D communications into cellular networks and propose potential solutions. To maximize gains from such integration, resource allocation and interference management are key factors. We start by introducing cooperation between D2D and cellular users in order to minimize any interference between the two user types and identifying the scenarios where this cooperation can be beneficial. It is shown that an increase in the number of cellular users within the coverage area and in the size of the cell is associated with a higher probability of cooperation. With this cooperation, we can potentially increase the number of connected devices, reduce the delay, increase the cell sum rate, and offload an overloaded cell.

Next, we consider D2D communications underlaying the uplink of cellular networks. In such a scenario, any potential gain from resource sharing (time, frequency, or space) is determined by how the interference is managed. The quality and performance of the interference management techniques depend on the availability of the channel state information (CSI) and the location of nodes as well as the frequency of updates regarding such information. The more information is required, the more signaling is needed, which results in higher power consumption by the users. We investigate the trade-off between the availability of full CSI, which necessitates instantaneous information, and that of limited CSI, which requires infrequent updates. Our results show that with limited CSI, a good performance (in terms of the sum rate of both user types) can be achieved if a small performance loss is tolerated by cellular users. In addition, we propose a novel approach for interference management which only requires the information on the number of D2D users without any knowledge about their CSI. This blind approach can achieve a small outage probability with very low computational complexity when the number of scheduled D2D users is small.

We then study the problem of mode selection, i.e., if a user should transmit in the D2D mode or in the conventional cellular mode. We identify the decision criteria for both overlay and underlay scenarios with two different objectives. We find out that the D2D communication is beneficial in macro cells or at cell boundaries. The area in which D2D mode is optimal varies with the objective of the network, transmit power, required quality-of-service, and the number of BS antennas.

In the second part of this thesis, we study the effects of integration and coexistence of underlay D2D communications with another promising technology proposed for 5G, namely massive multiple-input-multiple-output (MIMO). Potential benefits of both technologies are known individually, but the possibility of and performance gains from their coexistence are not adequately addressed. We evaluate the performance of this hybrid network in terms of energy efficiency and the average sum rate. Comprehensive analysis reveals that the performance highly depends on the D2D user density. We conclude that underlay D2D communications can only coexist with massive MIMO systems in the regime of low D2D user density. By introducing a high number of D2D users, gains from the massive MIMO technology degrade rapidly, and therefore in this case, the D2D communications should use the overlay approach rather than the underlay, or the network should only allow a subset of D2D transmissions to be active at a time.

Abstract [sv]

Den stora ökningen i mobildatatrafik de senaste åren har tilldragit sig mycket intresse. Med nuvarande infrastruktur och radioresurser kommer inte mobiloperatörerna att kunna hantera de kommande kraven. Därför har diskussioner kring den femte generationens (5G) mobila nätverk startat inom både akademin och industrin. Utöver högre kapacitet så kommer strikta krav på ökad energieffektivitet, minskad fördröjning samt ökad tillförlitlighet att planeras för 5G. En av många lösningar som har föreslagits är enhet-till-enhetskommunikation (device-to-device communications, D2D, på engelska), vilket innebär att närliggande mobilanvändare kan sända direkt till varandra utan att gå genom basstationen. 

I denna avhandling identifierar vi kompromisser och problem kring, samt föreslår lösningar för, integrering av D2D-kommunikation i cellulära nätverk. Viktiga faktorer för att maximera vinsten av sådan integrering är resursallokering och störningshantering. Avhandlingen börjar med att beskriva samarbetet mellan D2D- och cellulära användare för att minska störningen mellan de två användartyperna, samt för att identifiera scenarier där denna typ av samarbete kan vara fördelaktigt. Vi visar att samarbetssannolikheten ökar med antalet cellulära användare i täckningsområdet, samt när cellstorleken ökar. Denna typ av samarbete kan användas för att öka antalet ansluta enheter, minska fördröjningen, öka cellsummadatataken eller avlasta överlastade celler. 

Härnäst studerar vi D2D-kommunikation underliggande upplänken i cellulära nätverk. I ett sådant scenario bestäms eventuell vinst från resursdelning (t.ex. i tid, frekvens eller rymd) av hur störningen hanteras. Kvaliteten och prestandan hos störningshanteringen beror på tillgängligheten av kanalkännedom och information om nodernas position, samt uppdateringsfrekvensen för dessa. Ju mer information som behövs, desto mer signalering krävs, vilket leder till högre effektförbrukning hos användarna. Vi undersöker kompromissen mellan fullt tillgänglig kanalkännedom, vilket kräver momentan information, och ett scenario där kanalkännedomen är begränsad, vilket enbart kräver uppdatering med låg frekvens. Våra resultat visar att god summadatatakt kan uppnås när enbart begränsad kanalkännedom är tillgänglig, om en liten prestandaförlust tillåts för cellulära användare. Vi föreslår dessutom en ny metod för störningshantering som enbart kräver information om antalet D2D-användare, utan vetskap om deras kanalkännedom. Denna blinda metod kan uppnå hög täckningssannolikhet med låg beräkningskomplexitet när antalet schemalagda D2D-användare är lågt.

Vi studerar även lägesvalsproblemet, dvs. om en användare ska sända i D2D-läge eller i konventionellt cellulärt läge. Vi karaktäriserar beslutskriterierna för både överliggande och underliggande scenarier med två olika objektivfunktioner och visar att D2D-kommunikation är fördelaktig i makroceller samt vid cellkanterna. Området för D2D-optimalitet varierar med objektivfunktionen för nätverket, sändeffekten, servicekvalitetskraven och antalet basstationsantenner. 

I den andra delen av avhandlingen så studerar vi effekter kring integrering och samexistens av underliggande D2D-kommunikation med en annan lovande teknologi för 5G, nämligen massiv multiple input-multiple output (massiv MIMO). De individuella fördelarna för de två teknologierna är välkända, men eventuella prestandavinster när teknologierna samexisterar har inte studeras tillräckligt. Vi undersöker prestanda i detta hybridnätverk i termer av energieffektivitet och genomsnittlig summadatatakt. En noggrann analys visar att prestandan beror på tätheten av D2D-användare. Vi drar slutsatsen att underliggande D2D-kommunikation bara kan samexistera med massiv MIMO när tätheten av D2D-användare är låg. När det existerar många D2D-användare minskas prestandavinsten från massiv MIMO snabbt och därför bör D2D-kommunikationen ske i överliggande läge istället för underliggande läge. Alternativt kan nätverket tillåta att enbart en delmängd av D2D-sändningar är aktiva samtidigt.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. x, 53 p.
Series
Trita-ICT, 2015:07
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-168145 (URN)978-91-7595-572-8 (ISBN)
Public defence
2015-06-15, Sal C, KTH-ICT, Electrum, Kista, 14:00 (English)
Opponent
Supervisors
Funder
Wireless@kth
Note

QC 20150529

Available from: 2015-05-29 Created: 2015-05-27 Last updated: 2015-05-29Bibliographically approved

Open Access in DiVA

wcnc2014a(626 kB)370 downloads
File information
File name FULLTEXT01.pdfFile size 626 kBChecksum SHA-512
c71e2ec08c26fe6f6df43dc97b3237f8effce3bdb00b1cdfa4fe2909b02b9897275872598f1b95a7b3d3cf3969e7cac917a27158fb7af19236947682a4ebe05b
Type fulltextMimetype application/pdf

Other links

Publisher's full textWCNC

Authority records BETA

Shalmashi, ServehSlimane, Ben

Search in DiVA

By author/editor
Shalmashi, ServehSlimane, Ben
By organisation
Radio Systems Laboratory (RS Lab)Center for Wireless Systems, Wireless@kth
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 370 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 480 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf