Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pt nanodendrites anchored on bamboo-shaped carbon nanofiber arrays as highly efficient electrocatalyst for oxygen reduction reaction
Show others and affiliations
2013 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 38, no 36, 16677-16684 p.Article in journal (Refereed) Published
Abstract [en]

In order to improve the Pt utilization and enhance their catalytic performance in fuel cells, a novel composite electrode composed of single-crystalline Pt nanodendrites and support constructed by bamboo-shaped carbon nanofiber arrays (CNFAs) on carbon paper, is reported. This electrode is designed by growing vertically CNFAs on carbon paper via plasma enhanced chemical vapor deposition, followed by the direct synthesis of Pt nanodendrites using a simple surfactant-free aqueous solution method. Electron microscopy studies reveal that the Pt nanodendrites are uniformly high dispersed and anchored on the surface of CNFAs. Electrochemical measurements demonstrate that the resultant electrode exhibits higher electrocatalytic activity and stability for oxygen reduction reaction than commercial Pt/C catalyst, suggesting its potential application in fuel cells.

Place, publisher, year, edition, pages
2013. Vol. 38, no 36, 16677-16684 p.
Keyword [en]
Electrocatalyst, Bamboo-shaped carbon nanofiber arrays, Pt nanodendrites, Oxygen reduction reaction, Fuel cells
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-139274DOI: 10.1016/j.ijhydene.2013.04.037ISI: 000327904500092Scopus ID: 2-s2.0-84888005588OAI: oai:DiVA.org:kth-139274DiVA: diva2:685167
Note

QC 20140109

Available from: 2014-01-09 Created: 2014-01-08 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Zhu, Bin
By organisation
Heat and Power Technology
In the same journal
International journal of hydrogen energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf