References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt156",{id:"formSmash:upper:j_idt153:j_idt156",widgetVar:"widget_formSmash_upper_j_idt153_j_idt156",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Perron-Frobenius operators and the Klein-Gordon equationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 16, no 1, 31-66 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 16, no 1, 31-66 p.
##### Keyword [en]

Trigonometric system, inversion, Perron-Frobenius operator, Koopman operator, invariant measure, Klein-Gordon equation, ergodic theory
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-139512DOI: 10.4171/JEMS/427ISI: 000328255500002ScopusID: 2-s2.0-84890361563OAI: oai:DiVA.org:kth-139512DiVA: diva2:687413
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt455",{id:"formSmash:j_idt455",widgetVar:"widget_formSmash_j_idt455",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt461",{id:"formSmash:j_idt461",widgetVar:"widget_formSmash_j_idt461",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
##### Funder

Swedish Research Council
##### Note

For a smooth curve Gamma and a set Lambda in the plane R-2, let AC(Gamma; Lambda) be the space of finite Borel measures in the plane supported on Gamma, absolutely continuous with respect to arc length and whose Fourier transform vanishes on Lambda. Following [12], we say that (Gamma, Lambda) is a Heisenberg uniqueness pair if AC(Gamma; Lambda) = {0}. In the context of a hyperbola Gamma, the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Gamma of a collection of solutions to the Klein-Gordon equation. In this work, we mainly address the issue of finding the dimension of AC(Gamma; Lambda) when it is nonzero. We will fix the curve Gamma to be the hyperbola x(1)x(2) = 1, and the set Lambda = Lambda(alpha,beta) to be the lattice-cross Lambda(alpha,beta) = (alpha Zeta x {0}) boolean OR ({0} x beta Z), where alpha, beta are positive reals. We will also consider Gamma(+), the branch of x(1)x(2) = 1 where x(1) > 0. In [12], it is shown that AC(Gamma; Lambda(alpha,beta)) = {0} if and only if alpha beta <= 1. Here, we show that for alpha beta > 1, we get a rather drastic "phase transition": AC(Gamma; Lambda(alpha,beta)) is infinite-dimensional whenever alpha beta > 1. It is shown in [13] that AC(Gamma(+); Lambda(alpha,beta)) = {0} if and only if alpha beta < 4. Moreover, at the edge alpha beta = 4, the behavior is more exotic: the space AC(Gamma(+); Lambda(alpha,beta)) is one-dimensional. Here, we show that the dimension of AC(Gamma(+); Lambda(alpha,beta)) is infinite whenever alpha beta > 4. Dynamical systems, and more specifically Perron-Frobenius operators, play a prominent role in the presentation.

QC 20140114

Available from: 2014-01-14 Created: 2014-01-14 Last updated: 2014-01-14Bibliographically approvedReferences$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1196",{id:"formSmash:lower:j_idt1196",widgetVar:"widget_formSmash_lower_j_idt1196",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1197_j_idt1199",{id:"formSmash:lower:j_idt1197:j_idt1199",widgetVar:"widget_formSmash_lower_j_idt1197_j_idt1199",target:"formSmash:lower:j_idt1197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});