Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Operator identities for standard weighted bergman shift and toeplitz operators
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2013 (English)In: Journal of operator theory, ISSN 0379-4024, E-ISSN 1841-7744, Vol. 70, no 2, 451-475 p.Article in journal (Refereed) Published
Abstract [en]

We prove an operator identity for the shift operator in the scale of standard weighted Bergman spaces in the unit disc. This operator identity is then applied in the context of functional calculus for the shift operator and a characterization of harmonic symbol Bergman space Toeplitz operators is obtained generalizing an earlier result by Louhichi and Olofsson. Duality arguments lead to operator inequalities and structure formulas for reproducing kernel functions which make contact with work of Richter, Shimorin, and others.

Place, publisher, year, edition, pages
2013. Vol. 70, no 2, 451-475 p.
Keyword [en]
Bergman space, Functional calculus, Reproducing kernel function, Shift operator, Toeplitz operator
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-139445DOI: 10.7900/jot.2011sep09.1967ISI: 000330815600006Scopus ID: 2-s2.0-84889649765OAI: oai:DiVA.org:kth-139445DiVA: diva2:688372
Note

QC 20140116

Available from: 2014-01-16 Created: 2014-01-13 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Wennman, Aron
By organisation
Mathematics (Dept.)
In the same journal
Journal of operator theory
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf