Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Natural Resource Potential of Macroalgae Harvesting in the Baltic Sea-Case Study Trelleborg, Sweden
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.
Show others and affiliations
2013 (English)In: Global Challenges in Integrated Coastal Zone Management, John Wiley & Sons, 2013, 69-84 p.Chapter in book (Other academic)
Abstract [en]

The interest in harvesting biomass from the Baltic Sea has increased in recent years. However, there is a lack of available data on macroalgae biomass and of cost-effective methods for site-specific quantification of macroalgae. In this study, macroalgae biomass has been quantified in Trelleborg and thus the nutrient reduction that could be achieved by harvesting on a regional scale. The biomass was estimated on the basis of existing inventories of macroalgae, photic zone distribution and bottom substrata. An independent model for estimating the potential of macroalgae growth was applied where factors affecting the growth of macroalgae, for example nutrients, light and temperature, were considered. The estimated summer stock of macroalgae biomass along the 58 km coastal stretch in Trelleborg amounts to 19 000 tonnes dry weight (dwt) red filamentous algae. If 10-30% of this summer stock were to be harvested, a nutrient reduction of 50-150 t of nitrogen could be achieved. The model for estimating biomass proved promising and worthy of further investigation.

Place, publisher, year, edition, pages
John Wiley & Sons, 2013. 69-84 p.
Keyword [en]
Algae biomass, Biomass quantification, Filamentous biomass, Macroalgae harvesting, Natural resource potential
National Category
Ecology
Identifiers
URN: urn:nbn:se:kth:diva-140103DOI: 10.1002/9781118496480.ch6Scopus ID: 2-s2.0-84889496130ISBN: 9780470657560 (print)OAI: oai:DiVA.org:kth-140103DiVA: diva2:688679
Note

QC 20140117

Available from: 2014-01-17 Created: 2014-01-17 Last updated: 2014-11-26Bibliographically approved
In thesis
1. Sustainability Aspects of Bioenergy and Nutrient Recovery from Marine Biomass: Baltic Sea case studies
Open this publication in new window or tab >>Sustainability Aspects of Bioenergy and Nutrient Recovery from Marine Biomass: Baltic Sea case studies
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Coastal areas around the world are experiencing environmental problems such as climate change and eutrophication. These, in turn, lead to emerging challenges with excessive amounts of biomass that impact coastal communities. Developing utilisation strategies for marine biomass is therefore highly relevant and forms part of the blue growth research field. In response to environmental concerns, as a waste management strategy and as part of blue growth research initiatives, several Baltic Sea coastal projects have been initiated in recent years to study utilisation of maritime biomass. However, the sustainability of these utilisation strategies has not been critically appraised. Therefore, the work presented in this thesis explored some key sustainability aspects of two Baltic Sea case studies utilising common reed (Kalmar, Sweden) and mass-occurring filamentous macroalgae (Trelleborg, Sweden) for biogas and biofertiliser recovery. Energy analyses suggested that both case studies could provide a positive energy balance and have the potential to achieve nutrient recovery. Moreover, a contingent valuation study in Trelleborg demonstrated considerable welfare benefits of biomass utilisation. These findings indicate that marine biomass utilisation strategies highlight potential to contribute to environmental and welfare benefits of these coastal communities.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xii, 57 p.
Series
TRITA-IM, ISSN 1402-7615 ; 2014:03
National Category
Environmental Sciences
Research subject
Industrial Ecology
Identifiers
urn:nbn:se:kth:diva-156377 (URN)978-91-7595-365-6 (ISBN)
Public defence
2014-12-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Formas, Grant number 229-2009-468
Note

QC 20141126

Available from: 2014-11-26 Created: 2014-11-26 Last updated: 2014-12-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Malmström, MariaGröndahl, Fredrik

Search in DiVA

By author/editor
Risén, EmmaPechsiri, Joseph SanthiMalmström, MariaBrandt, NilsGröndahl, Fredrik
By organisation
Industrial Ecology
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 140 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf