Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistics of Particle Accumulation in Spatially Developing Turbulent Boundary Layers
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-9172-6311
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0001-9627-5903
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.ORCID iD: 0000-0002-4346-4732
Show others and affiliations
2014 (English)In: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 92, no 1-2, 27-40 p.Article in journal (Refereed) Published
Abstract [en]

We present the results of a Direct Numerical Simulation of a particle-laden spatially developing turbulent boundary layer up to Re (theta) = 2500. Two main features differentiate the behavior of inertial particles in a zero-pressure-gradient turbulent boundary layer from the more commonly studied case of a parallel channel flow. The first is the variation along the streamwise direction of the local dimensionless parameters defining the fluid-particle interactions. The second is the coexistence of an irrotational free-stream and a near-wall rotational turbulent flow. As concerns the first issue, an inner and an outer Stokes number can be defined using inner and outer flow units. The inner Stokes number governs the near-wall behavior similarly to the case of channel flow. To understand the effect of a laminar-turbulent interface, we examine the behavior of particles initially released in the free stream and show that they present a distinct behavior with respect to those directly injected inside the boundary layer. A region of minimum concentration occurs inside the turbulent boundary layer at about one displacement thickness from the wall. Its formation is due to the competition between two transport mechanisms: a relatively slow turbulent diffusion towards the buffer layer and a fast turbophoretic drift towards the wall.

Place, publisher, year, edition, pages
2014. Vol. 92, no 1-2, 27-40 p.
Keyword [en]
Inertial particles, Turbulent boundary layers, Wall flows, Turbophoresis, DNS
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-140126DOI: 10.1007/s10494-013-9506-4ISI: 000328844400003Scopus ID: 2-s2.0-84891835981OAI: oai:DiVA.org:kth-140126DiVA: diva2:689963
Funder
Swedish e‐Science Research Center
Note

QC 20140122

Available from: 2014-01-22 Created: 2014-01-17 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sardina, GaetanoSchlatter, PhilippBrandt, Luca

Search in DiVA

By author/editor
Sardina, GaetanoPicano, FrancescoSchlatter, PhilippBrandt, Luca
By organisation
MechanicsLinné Flow Center, FLOWSeRC - Swedish e-Science Research Centre
In the same journal
Flow Turbulence and Combustion
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf