Change search
ReferencesLink to record
Permanent link

Direct link
Multiple Phase Hele-Shaw Flows
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

A one phase Hele-Shaw flow, described by a domain D(t) (t represents time) in the plane is the flow of a liquid injected at a constant rate in the separation between two narrowly separated parallel planes. This thesis deals with the formulation and proof of existence for a multiple phase Hele-Shaw flow in arbitrary dimension R^n exhibiting separation of the phases. A smooth version of the problem, depending on a small parameter epsilon, has been considered. Solutions to this smooth problem approximate the multiple-phase Hele-Shaw flow. We show that the smooth problem has a solution using a variational technique with functions u=u(t;eps) in the Sobolev space H_0^1 describing the Hele-Shaw flow with D(t)=support(u(t;eps)). As we let the parameter epsilon tend to zero we get that the solutions u(t;eps) converges weakly to a family of functions u(t) in the same Sobolev space which describe the desired Hele-Shaw flow. Furthermore the phases represented by the components of u(t) are separated in the sense that the overlap of any two distinct phases has vanishing n-dimensional Lebesgue measure. 

We also touch upon a formulation of the multiple phase Hele-Shaw flow which would, beyond separation of the phases, provide freezing of the intersecting boundary of two phases. This formulation of the problem tries to incorporate memory in to the system via means of an integration over previous states. 

Place, publisher, year, edition, pages
TRITA-MAT-E, 2014:03
National Category
URN: urn:nbn:se:kth:diva-139321OAI: diva2:690751
Subject / course
Educational program
Master of Science - Mathematics
Available from: 2014-02-28 Created: 2014-01-09 Last updated: 2014-03-13Bibliographically approved

Open Access in DiVA

fulltext(1355 kB)195 downloads
File information
File name FULLTEXT01.pdfFile size 1355 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)

Search outside of DiVA

GoogleGoogle Scholar
Total: 195 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 118 hits
ReferencesLink to record
Permanent link

Direct link