Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The effect of lithium-intercalation on the mechanical properties of carbon fibres
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.ORCID iD: 0000-0002-9744-4550
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
2014 (English)In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 68, 725-733 p.Article in journal (Refereed) Published
Abstract [en]

Carbon fibres (CFs) can be used as lightweight structural electrodes since they have high specific tensile stiffness and ultimate tensile strength (UTS), and high lithium (Li)-intercalation capability. This paper investigates the relationship between the amount of intercalated Li and the changes induced in the tensile stiffness and UTS of polyacrylonitrile-based CF tows. After a few electrochemical cycles the stiffness was not degraded and independent of the measured capacity. A drop in the UTS of lithiated CFs was only partly recovered during delithiation and clearly larger at the highest measured capacities, but remained less than 40% at full charge. The reversibility of this drop with the C-rate and measured capacity supports that the fibres are not damaged, that some Li is irreversibly trapped in the delithiated CFs and that reversible strains develop in the fibre. However, the drop in the strength does not vary linearly with the measured capacity and the drop in the ultimate tensile strain remains lower than the CF longitudinal expansion at full charge. These results suggest that the loss of strength might relate to the degree of lithiation of defectives areas which govern the tensile failure mode of the CFs.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 68, 725-733 p.
Keyword [en]
Electrochemical cycle, Lithium Intercalation, Longitudinal expansions, Loss of strength, Reversible strain, Tensile failures, Tensile stiffness, Ultimate tensile strength
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-140797DOI: 10.1016/j.carbon.2013.11.056ISI: 000330814200074Scopus ID: 2-s2.0-84891558526OAI: oai:DiVA.org:kth-140797DiVA: diva2:693104
Funder
Swedish Foundation for Strategic Research , RMA08-0002Swedish Research Council, 621-2012-3764
Note

QC 20140203

Available from: 2014-02-03 Created: 2014-01-31 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Lithium-intercalated Carbon Fibres: Towards the Realisation of Multifunctional Composite Energy Storage Materials
Open this publication in new window or tab >>Lithium-intercalated Carbon Fibres: Towards the Realisation of Multifunctional Composite Energy Storage Materials
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lightweight design is a major improvement path for sustainable transport asit contributes to lower vehicles energy consumption and gas emissions. Anovel solution to weight savings is to store energy directly in the mechanicalstructure of the vehicle with a multifunctional material, called structural battery,which could simultaneously bear mechanical loads and store electricalenergy. This is especially possible because the carbon fibre is a high performancemechanical reinforcement for polymer composites and can also be usedas a lithium-intercalating electrode in lithium-ion batteries. In this thesis, theperformance of carbon fibres for use as a lithium-intercalating structural electrodeis investigated.Electrochemical characterisation has shown that intermediate modulus polyacrylonitrile- based carbon fibres which have the highest strength also offerthe most promising electrochemical capacities when compared to other fibregrades with different microstructures. The measured capacity of fibre bundleswas highly dependent on the current rate and at low rate the capacitiesclose to that of graphite electrodes were measured. In a mechanical characterisationthe carbon fibre was not affected by the number of electrochemicalcycles, up to 1000 cycles, but rather by the amount of intercalated lithium.The tensile stiffness appeared to remain unchanged, but during lithation thetensile strength dropped and partly recovered during delithiation due to afirst-cycle irreversible drop. A longitudinal expansion of the carbon fibre wasalso measured during lithiation. An irreversible expansion in the delithiatedfibres highlighted that the first cycle-capacity loss is partly due to intercalatedlithium which is trapped in the carbon fibre. From these results, the carbonfibre is without doubts suitable for structural battery applications.A mechanical-electrochemical coupling in lithium-intercalated carbon fibreswas also measured, highlighting a piezo-electrochemical transducer effect resultingin new functionalities for lithium-intercalated carbon fibres. The longitudinalexpansion strain can be used for mechanical actuation. A responseof the cell open-circuit potential to an applied mechanical strain can be usedfor strain sensing.

Abstract [sv]

Lättviktsdesign är en stor väg till förbättring för hållbara transporter eftersomdet bidrar till lägre energiförbrukning och utsläpp för fordon. Ett ny lösningpå viktbesparing är att lagra energi direkt i den mekaniska fordonskroppenmed ett multifunktionellt material, kallat strukturellt batteri, som samtidigtskulle kunna bära mekaniska belastningar och lagra elektrisk energi. Dettaär möjligt eftersom kolfibrer är en högpresterande mekanisk förstärkningav polymerkompositer och också kan användas för en litium-interkalerandeelektrod i litiumjonbatterier. I denna avhandling har användandet av kolfibrersom en litium-interkalerande strukturell elektrod undersöks.Elektrokemisk karakterisering har visat att mellanmodul-polyakrylnitrilbaseradekolfibrer som har den högsta styrkan även erbjuder de mest lovandeelektrokemiska egenskaperna jämfört med andra fibersorter med annorlundamikrostrukturer. Den uppmätta kapaciteten hos fibrerknippen var starkt beroendeav den aktuella spänningen och vid låg spänning kapaciteter nära denför grafitelektroder mättes. Vid en mekanisk belastning påverkas kolfibrerninte av antalet elektrokemiska cykler, upp till 1000 cykler, utan snarare avmängden interkalerad litium. Dragstyvheten verkade vara oförändrat, menunder litiering sjönk draghållfastheten som dock delvis återhämtade sig efterdelitiering men med en irreversibel förlust efter den första cykeln. Enlängdexpansion av kolfibern mättes under litiering. En irreversibel expansionefter delitiering av fibrer betonade att kapacitetsförlusten efter förstacykeln berodde delvis på interkalerat litium, som är instängt i kolfibrerna.Utifrån dessa resultat är kolfibrer utan tvivel lämpliga för strukturella batteritillämpning.En mekanisk-elektrokemisk koppling i litiuminterkalerade kolfibrer mättesockså, vilket belyser en piezo-elektrokemisk effekt som kan ge nya funktionerför litium-interkalerande kolfibrer. Expansionen kan användas för mekaniskaktivering. Det svaret hos cellpotentialen vid en mekanisk deformation kananvändas för deformationsavkänning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xi, 61 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2014:07
National Category
Engineering and Technology
Research subject
Aerospace Engineering
Identifiers
urn:nbn:se:kth:diva-144323 (URN)978-91-7595-072-3 (ISBN)
Public defence
2014-05-16, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:15 (English)
Opponent
Supervisors
Projects
Kombatt
Funder
Swedish Foundation for Strategic Research , 26188Swedish Research Council, 621- 2012-3764
Note

QC 20140423

Available from: 2014-04-23 Created: 2014-04-17 Last updated: 2014-04-23Bibliographically approved

Open Access in DiVA

fulltext(299 kB)98 downloads
File information
File name FULLTEXT01.pdfFile size 299 kBChecksum SHA-512
0fc2b3617271bdc0d503df86dbfa8dd257be768d7131d7e4f635307f2a5d4eddfe7e1832e17211669ef3848154b4d52b5ae6e7d892e3391645a63a3153b33b42
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusSciencedirect

Authority records BETA

Zenkert, DanLindbergh, Göran

Search in DiVA

By author/editor
Jacques, EricHellqvist Kjell, MariaZenkert, DanLindbergh, Göran
By organisation
Lightweight StructuresApplied Electrochemistry
In the same journal
Carbon
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 98 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 227 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf